ﻻ يوجد ملخص باللغة العربية
Given a compact $E subset mathbb{R}^n$ and $s > 0$, the maximum distance problem seeks a compact and connected subset of $mathbb{R}^n$ of smallest one dimensional Hausdorff measure whose $s$-neighborhood covers $E$. For $Esubset mathbb{R}^2$, we prove that minimizing over minimum spanning trees that connect the centers of balls of radius $s$, which cover $E$, solves the maximum distance problem. The main difficulty in proving this result is overcome by the proof of Lemma 3.5, which states that one is able to cover the $s$-neighborhood of a Lipschitz curve $Gamma$ in $mathbb{R}^2$ with a finite number of balls of radius $s$, and connect their centers with another Lipschitz curve $Gamma_ast$, where $mathcal{H}^1(Gamma_ast)$ is arbitrarily close to $mathcal{H}^1(Gamma)$. We also present an open source package for computational exploration of the maximum distance problem using minimum spanning trees, available at https://github.com/mtdaydream/MDP_MST.
We review results on the scaling of the optimal path length in random networks with weighted links or nodes. In strong disorder we find that the length of the optimal path increases dramatically compared to the known small world result for the minimu
We study an extension of the Falconer distance problem in the multiparameter setting. Given $ellgeq 1$ and $mathbb{R}^{d}=mathbb{R}^{d_1}timescdots timesmathbb{R}^{d_ell}$, $d_igeq 2$. For any compact set $Esubset mathbb{R}^{d}$ with Hausdorff dimens
A spanning tree of an edge-colored graph is rainbow provided that each of its edges receives a distinct color. In this paper we consider the natural extremal problem of maximizing and minimizing the number of rainbow spanning trees in a graph $G$. Su
We present here a topological characterization of the minimal spanning tree that can be obtained by considering the price return correlations of stocks traded in a financial market. We compare the minimal spanning tree obtained from a large group of
Given a collection of graphs $mathbf{G}=(G_1, ldots, G_m)$ with the same vertex set, an $m$-edge graph $Hsubset cup_{iin [m]}G_i$ is a transversal if there is a bijection $phi:E(H)to [m]$ such that $ein E(G_{phi(e)})$ for each $ein E(H)$. We give asy