ترغب بنشر مسار تعليمي؟ اضغط هنا

The disordered flat phase of a crystal surface - critical and dynamic properties

42   0   0.0 ( 0 )
 نشر من قبل Martin Holtschneider
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze a restricted SOS model on a square lattice with nearest and next-nearest neighbor interactions, using Monte Carlo techniques. In particular, the critical exponents at the preroughening transition between the flat and disordered flat (DOF) phases are confirmed to be non-universal. Moreover, in the DOF phase, the equilibration of various profiles imprinted on the crystal surface is simulated, applying evaporation kinetics and surface diffusion. Similarities to and deviations from related findings in the flat and rough phases are discussed.



قيم البحث

اقرأ أيضاً

The critical properties characterizing the formation of the Floquet time crystal in the prethermal phase are investigated analytically in the periodically driven $O(N)$ model. In particular, we focus on the critical line separating the trivial phase with period synchronized dynamics and absence of long-range spatial order from the non-trivial phase where long-range spatial order is accompanied by period-doubling dynamics. In the vicinity of the critical line, with a combination of dimensional expansion and exact solution for $Ntoinfty$, we determine the exponent $ u$ that characterizes the divergence of the spatial correlation length of the equal-time correlation functions, the exponent $beta$ characterizing the growth of the amplitude of the order-parameter, as well as the initial-slip exponent $theta$ of the aging dynamics when a quench is performed from deep in the trivial phase to the critical line. The exponents $ u, beta, theta$ are found to be identical to those in the absence of the drive. In addition, the functional form of the aging is found to depend on whether the system is probed at times that are small or large compared to the drive period. The spatial structure of the two-point correlation functions, obtained as a linear response to a perturbing potential in the vicinity of the critical line, is found to show algebraic decays that are longer ranged than in the absence of a drive, and besides being period-doubled, are also found to oscillate in space at the wave-vector $omega/(2 v)$, $v$ being the velocity of the quasiparticles, and $omega$ being the drive frequency.
The periodically driven O(N) model is studied near the critical line separating a disordered paramagnetic phase from a period doubled phase, the latter being an example of a Floquet time crystal. The time evolution of one-point and two-point correlat ion functions are obtained within the Gaussian approximation and perturbatively in the drive amplitude. The correlations are found to show not only period doubling, but also power-law decays at large spatial distances. These features are compared with the undriven O(N) model, in the vicinity of the paramagnetic-ferromagnetic critical point. The algebraic decays in space are found to be qualitatively different in the driven and the undriven cases. In particular, the spatio-temporal order of the Floquet time crystal leads to position-momentum and momentum-momentum correlation functions which are more long-ranged in the driven than in the undriven model. The light-cone dynamics associated with the correlation functions is also qualitatively different as the critical line of the Floquet time crystal shows a light-cone with two distinct velocities, with the ratio of these two velocities scaling as the square-root of the dimensionless drive amplitude. The Floquet unitary, which describes the time evolution due to a complete cycle of the drive, is constructed for modes with small momenta compared to the drive frequency, but having a generic relationship with the square-root of the drive amplitude. At intermediate momenta, which are large compared to the square-root of the drive amplitude, the Floquet unitary is found to simply rotate the modes. On the other hand, at momenta which are small compared to the square-root of the drive amplitude, the Floquet unitary is found to primarily squeeze the modes, to an extent which increases upon increasing the wavelength of the modes, with a power-law dependence on it.
Phase transition and critical properties of Ising-like spin-orbital interacting systems in 2-dimensional triangular lattice are investigated. We first show that the ground state of the system is a composite spin-orbital ferro-ordered phase. Though La ndau effective field theory predicts the second-order phase transition of the composite spin-orbital order, however, the critical exponents obtained by the renormalization group approach demonstrate that the spin-orbital order-disorder transition is far from the second-order, rather, it is more close to the first-order, implying that the widely observed first-order transition in many transition-metal oxides may be intrinsic. The unusual critical behavior near the transition point is attributed to the fractionalization of the composite order parameter.
65 - H. W. Diehl , M. Krech , 2002
The dynamic critical behavior of isotropic Heisenberg ferromagnets with a planar free surface is investigated by means of field-theoretic renormalization group techniques and high-precision computer simulations. An appropriate semi-infinite extension of the stochastic model J is constructed. The relevant boundary terms of the action of the associated dynamic field theory are identified, the implied boundary conditions are derived, and the renormalization of the model in $d<6$ bulk dimensions is clarified. Two distinct renormalization schemes are utilized. The first is a massless one based on minimal subtraction of dimensional poles and the dimensionality expansion about $d=6$. To overcome its problems in going below $d=4$ dimensions, a massive one for fixed dimensions $dle 4$ is constructed. The resulting renormalization group (or Callan Symanzik) equations are exploited to obtain the scaling forms of surface quantities like the dynamic structure factor. In conjunction with boundary operator expansions scaling relations follow that relate the critical indices of the dynamic and static infrared singularities of surface quantities to familiar emph{static} bulk and surface exponents. To test the predicted scaling forms and scaling-law expressions for the critical exponents involved, accurate computer-simulation data are presented for the dynamic surface structure factor. These are in conformity with our predictions.
We study the phenomenon of super-roughening found on surfaces growing on disordered substrates. We consider a one-dimensional version of the problem for which the pure, ordered model exhibits a roughening phase transition. Extensive numerical simulat ions combined with analytical approximations indicate that super-roughening is a regime of asymptotically flat surfaces with non-trivial, rough short-scale features arising from the competition between surface tension and disorder. Based on this evidence and on previous simulations of the two-dimensional Random sine-Gordon model [Sanchez et al., Phys. Rev. E 62, 3219 (2000)], we argue that this scenario is general and explains equally well the hitherto poorly understood two-dimensional case.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا