ﻻ يوجد ملخص باللغة العربية
The periodically driven O(N) model is studied near the critical line separating a disordered paramagnetic phase from a period doubled phase, the latter being an example of a Floquet time crystal. The time evolution of one-point and two-point correlation functions are obtained within the Gaussian approximation and perturbatively in the drive amplitude. The correlations are found to show not only period doubling, but also power-law decays at large spatial distances. These features are compared with the undriven O(N) model, in the vicinity of the paramagnetic-ferromagnetic critical point. The algebraic decays in space are found to be qualitatively different in the driven and the undriven cases. In particular, the spatio-temporal order of the Floquet time crystal leads to position-momentum and momentum-momentum correlation functions which are more long-ranged in the driven than in the undriven model. The light-cone dynamics associated with the correlation functions is also qualitatively different as the critical line of the Floquet time crystal shows a light-cone with two distinct velocities, with the ratio of these two velocities scaling as the square-root of the dimensionless drive amplitude. The Floquet unitary, which describes the time evolution due to a complete cycle of the drive, is constructed for modes with small momenta compared to the drive frequency, but having a generic relationship with the square-root of the drive amplitude. At intermediate momenta, which are large compared to the square-root of the drive amplitude, the Floquet unitary is found to simply rotate the modes. On the other hand, at momenta which are small compared to the square-root of the drive amplitude, the Floquet unitary is found to primarily squeeze the modes, to an extent which increases upon increasing the wavelength of the modes, with a power-law dependence on it.
The critical properties characterizing the formation of the Floquet time crystal in the prethermal phase are investigated analytically in the periodically driven $O(N)$ model. In particular, we focus on the critical line separating the trivial phase
In this work we discuss the existence of time-translation symmetry breaking in a kicked infinite-range-interacting clean spin system described by the Lipkin-Meshkov-Glick model. This Floquet time crystal is robust under perturbations of the kicking p
We analyze a restricted SOS model on a square lattice with nearest and next-nearest neighbor interactions, using Monte Carlo techniques. In particular, the critical exponents at the preroughening transition between the flat and disordered flat (DOF)
The relaxation time approximation (RTA) is a well known method of describing the time evolution of a statistical ensemble by linking distributions of the variables of interest at different stages of their temporal evolution. We show that if all the d
The $q$-state Potts model has stood at the frontier of research in statistical mechanics for many years. In the absence of a closed-form solution, much of the past efforts have focused on locating its critical manifold, trajectory in the parameter ${