ﻻ يوجد ملخص باللغة العربية
We study the phenomenon of super-roughening found on surfaces growing on disordered substrates. We consider a one-dimensional version of the problem for which the pure, ordered model exhibits a roughening phase transition. Extensive numerical simulations combined with analytical approximations indicate that super-roughening is a regime of asymptotically flat surfaces with non-trivial, rough short-scale features arising from the competition between surface tension and disorder. Based on this evidence and on previous simulations of the two-dimensional Random sine-Gordon model [Sanchez et al., Phys. Rev. E 62, 3219 (2000)], we argue that this scenario is general and explains equally well the hitherto poorly understood two-dimensional case.
We study numerically the roughening properties of an interface in a two-dimensional Ising model with either random bonds or random fields, which are representative of universality classes where disorder acts only on the interface or also away from it
Mixed order transitions are those which show a discontinuity of the order parameter as well as a divergent correlation length. We show that the behaviour of the order parameter correlation function along the transition line of mixed order transitions
We study the time-averaged flow in a model of particles that randomly hop on a finite directed graph. In the limit as the number of particles and the time window go to infinity but the graph remains finite, the large-deviation rate functional of the
We argue that a strict relation exists between two in principle unrelated quantities: The size of the growing domains in a coarsening system, and the kinetic roughening of an interface. This relation is confirmed by extensive simulations of the Ising
In the present work, we discuss how the functional form of thermodynamic observables can be deduced from the geometric properties of subsets of phase space. The geometric quantities taken into account are mainly extrinsic curvatures of the energy lev