ﻻ يوجد ملخص باللغة العربية
We calculate the excitation spectrum and spectral weights of the alternating antiferromagnetic-ferromagnetic spin-half Heisenberg chain with exchange couplings $J$ and $-|lambda|J$ as a power series in $lambda$. For small $|lambda|$, the gapped one-particle spectrum has a maximum at $k=0$ and there is a rich structure of bound (and anti-bound) states below (and above) the 2-particle continuum. As $|lambda|$ is increased past unity the spectrum crosses over to the Haldane regime, where the peak shifts away from $k=0$, the one particle states merge with the bottom of the continuum near $k=0$, and the spectral weights associated with the one-particle states become very small. Extrapolation of the spectrum to large $|lambda|$ confirms that the ground state energy and excitation gap map onto those of the spin-one chain.
Dynamics of S=1 antiferromagnetic bond-alternating chains in the dimer phase, in the vicinity of the critical point with the Haldane phase, is studied by a field theoretical method. This model is considered to represent the compound Ni(C$_9$H$_{24}$N
We use extensive DMRG calculations to show that a classification of SU(n) spin chains with regard to the existence of spinon confinement and hence a Haldane gap obtained previously for valence bond solid models applies to SU(n) Heisenberg chains as w
The ground state spin-wave excitations and thermodynamic properties of two types of ferrimagnetic chains are investigated: the alternating spin-1/2 spin-5/2 chain and a similar chain with a spin-1/2 pendant attached to the spin-5/2 site. Results for
In conventional quasi-one-dimensional antiferromagnets with quantum spins, magnetic excitations are carried by either magnons or spinons in different energy regimes: they do not coexist independently, nor could they interact with each other. In this
Inelastic neutron scattering experiments on the S=1 quasi-one-dimensional bond-alternating antiferromagnet Ni(C9D24N4)(NO2)ClO4 have been performed under magnetic fields below and above a critical field Hc at which the energy gap closes. Normal field