ترغب بنشر مسار تعليمي؟ اضغط هنا

Coexistence and interaction of spinons and magnons in an antiferromagnet with alternating antiferromagnetic and ferromagnetic quantum spin chains

66   0   0.0 ( 0 )
 نشر من قبل Heda Zhang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In conventional quasi-one-dimensional antiferromagnets with quantum spins, magnetic excitations are carried by either magnons or spinons in different energy regimes: they do not coexist independently, nor could they interact with each other. In this Letter, by combining inelastic neutron scattering, quantum Monte Carlo simulations and Random Phase Approximation calculations, we report the discovery and discuss the physics of the coexistence of magnons and spinons and their interactions in Botallackite-Cu2(OH)3Br. This is a unique quantum antiferromagnet consisting of alternating ferromagnetic and antiferromagnetic Spin-1/2 chains with weak inter-chain couplings. Our study presents a new paradigm where one can study the interaction between two different types of magnetic quasiparticles, magnons and spinons.

قيم البحث

اقرأ أيضاً

64 - T. Asano , H. Nojiri , Y. Inagaki 2002
Considering experimental results obtained on three prototype compounds, TMMC, CsCoCl3 (or CsCoBr3) and Cu Benzoate, we discuss the importance of non-linear excitations in the physics of quantum (and classical) antiferromagnetic spin chains.
Quantum spin systems exhibit an enormous range of collective excitations, but their spin waves, gapped triplons, fractional spinons, or yet other modes are generally held to be mutually exclusive. Here we show by neutron spectroscopy on SeCuO$_3$ tha t magnons, triplons, and spinons are present simultaneously. We demonstrate that this is a consequence of a structure consisting of two coupled subsystems and identify all the interactions of a minimal magnetic model. Our results serve qualitatively to open the field of multi-excitation spin systems and quantitatively to constrain the complete theoretical description of one member of this class of materials.
We use inelastic neutron scattering to study energy and wave vector dependence of spin fluctuations in SrCo$_2$As$_2$, derived from SrFe$_{2-x}$Co$_x$As$_2$ iron pnictide superconductors. Our data reveals the coexistence of antiferromagnetic (AF) and ferromagnetic (FM) spin fluctuations at wave vectors $textbf{Q}_{rm AF}$=(1,0) and $textbf{Q}_{rm FM}$=(0,0)/(2,0), respectively. By comparing neutron scattering results with those of dynamic mean field theory calculation and angle-resolved photoemission spectroscopy experiments, we conclude that both AF and FM spin fluctuations in SrCo$_2$As$_2$ are closely associated with a flat band of the $e_g$ orbitals near the Fermi level, different from the $t_{2g}$ orbitals in superconducting SrFe$_{2-x}$Co$_x$As$_2$. Therefore, Co-substitution in SrFe$_{2-x}$Co$_x$As$_2$ induces a $t_{2g}$ to $e_g$ orbital switching, and is responsible for FM spin fluctuations detrimental to the singlet pairing superconductivity.
We study the spectrum and the nature of the excitations of an antiferromagnetic (AFM) Heisenberg chain with staggered long range interactions, both numerically using the time-dependent density matrix renormalization group (tDMRG) method and by means of a multi-spinon approximation that qualitatively explains its main features. The unfrustrated long-range nature of the exchange effectively increases the dimensionality of the system and the chain is able to undergo true symmetry breaking and develop long range order, transitioning from a gapless spin liquid to a gapless ordered AFM phase. We calculated the momentum resolved spin dynamical structure factor and found that for weakly decaying interactions the emergence of Neel order can be associated to the formation of bound states of spinons that become coherent magnons. The quasiparticle band leaks out from the two-spinon continuum that is pushed up to higher energies. Our physical picture is also supported by an analysis of the behavior of the excitations in real-time.
We calculate the excitation spectrum and spectral weights of the alternating antiferromagnetic-ferromagnetic spin-half Heisenberg chain with exchange couplings $J$ and $-|lambda|J$ as a power series in $lambda$. For small $|lambda|$, the gapped one-p article spectrum has a maximum at $k=0$ and there is a rich structure of bound (and anti-bound) states below (and above) the 2-particle continuum. As $|lambda|$ is increased past unity the spectrum crosses over to the Haldane regime, where the peak shifts away from $k=0$, the one particle states merge with the bottom of the continuum near $k=0$, and the spectral weights associated with the one-particle states become very small. Extrapolation of the spectrum to large $|lambda|$ confirms that the ground state energy and excitation gap map onto those of the spin-one chain.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا