ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum phase transitions in alternating spin-(1/2, 5/2) Heisenberg chains

121   0   0.0 ( 0 )
 نشر من قبل Ren\\^e Montenegro-Filho
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The ground state spin-wave excitations and thermodynamic properties of two types of ferrimagnetic chains are investigated: the alternating spin-1/2 spin-5/2 chain and a similar chain with a spin-1/2 pendant attached to the spin-5/2 site. Results for magnetic susceptibility, magnetization and specific heat are obtained through the finite-temperature Lanczos method with the aim in describing available experimental data, as well as comparison with theoretical results from the semiclassical approximation and the low-temperature susceptibility expansion derived from Takahashis modified spin-wave theory. In particular, we study in detail the temperature vs. magnetic field phase diagram of the spin-1/2 spin-5/2 chain, in which several low-temperature quantum phases are identified: the Luttinger Liquid phase, the ferrimagnetic plateau and the fully polarized one, and the respective quantum critical points and crossover lines.



قيم البحث

اقرأ أيضاً

In conformal field theory, key properties of spin-1/2 chains, such as the ground state energy per site and the excitation gap scale with dimerization delta as delta^alpha with known exponents alpha and logarithmic corrections. The logarithmic correct ions vanish in a spin chain with nearest (J=1) and next nearest neighbor interactions (J_2), for J_2c=0.2411. DMRG analysis of a frustrated spin chain with no logarithmic corrections yields the field theoretic values of alpha, and the scaling relation is valid up to the physically realized range, delta ~ 0.1. However, chains with logarithmic corrections (J_2<0.2411 J) are more accurately fit by simple power laws with different exponents for physically realized dimerizations. We show the exponents decreasing from approximately 3/4 to 2/3 for the spin gap and from approximately 3/2 to 4/3 for the energy per site and error bars in the exponent also decrease as J_2 approaches to J_2c.
Field-dependent specific heat and neutron scattering measurements were used to explore the antiferromagnetic S=1/2 chain compound CuCl2 * 2((CD3)2SO). At zero field the system acquires magnetic long-range order below TN=0.93K with an ordered moment o f 0.44muB. An external field along the b-axis strengthens the zero-field magnetic order, while fields along the a- and c-axes lead to a collapse of the exchange stabilized order at mu0 Hc=6T and mu0 Hc=3.5T, respectively (for T=0.65K) and the formation of an energy gap in the excitation spectrum. We relate the field-induced gap to the presence of a staggered g-tensor and Dzyaloshinskii-Moriya interactions, which lead to effective staggered fields for magnetic fields applied along the a- and c-axes. Competition between anisotropy, inter-chain interactions and staggered fields leads to a succession of three phases as a function of field applied along the c-axis. For fields greater than mu0 Hc, we find a magnetic structure that reflects the symmetry of the staggered fields. The critical exponent, beta, of the temperature driven phase transitions are indistinguishable from those of the three-dimensional Heisenberg magnet, while measurements for transitions driven by quantum fluctuations produce larger values of beta.
159 - Heng-Na Xiong , Jian Ma , Zhe Sun 2009
We use reduced fidelity approach to characterize quantum phase transitions in the one-dimensional spin-1/2 dimerized Heisenberg chain in the antiferromagnetic case. The reduced fidelity susceptibilities between two nearest-neighboring spin pairs are considered. We find that they are directly related to the square of the second derivative of the ground-state energy. This enables us to conclude that the former might be a more effective indicator of the second-order quantum phase transitions than the latter. Two further exemplifications are given to confirm the conclusion is available for a broad class of systems with SU(2) and translation symmetries. Moreover, a general connection between reduced fidelity susceptibility and quantum phase transitions is illustrated.
We investigate the spin-1/2 Heisenberg model on a rectangular lattice, using the Gutzwiller projected variational wave function known as the staggered flux state. Using Monte Carlo techniques, the variational parameters and static spin-structure fact or for different coupling anisotropies $gamma=J_y/J_x$ are calculated. We observe a gradual evolution of the ground state energy towards a value which is very close to the 1D estimate provided by the Bethe ansatz and a good agreement between the finite size scaling of the energies. The spin-spin correlation functions exhibit a power-law decay with varying exponents for different anisotropies. Though the lack of Neel order makes the staggered flux state energetically unfavorable in the symmetric case $gamma=1$, it appears to capture the essence of the system close to 1D. Hence we believe that the staggered flux state provides an interesting starting point to explore the crossover from quantum disordered chains to the Neel ordered 2D square lattices.
We determine dynamical response functions of the S=1/2 Heisenberg quantum antiferromagnet on the kagome lattice based on large-scale exact diagonalizations combined with a continued fraction technique. The dynamical spin structure factor has importan t spectral weight predominantly along the boundary of the extended Brillouin zone and energy scans reveal broad response extending over a range of 2 sim 3J concomitant with pronounced intensity at lowest available energies. Dispersive features are largely absent. Dynamical singlet correlations -- which are relevant for inelastic light probes -- reveal a similar broad response, with a high intensity at low frequencies omega/J lesssim 0.2J. These low energy singlet excitations do however not seem to favor a specific valence bond crystal, but instead spread over many symmetry allowed eigenstates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا