ترغب بنشر مسار تعليمي؟ اضغط هنا

On the role of hydrodynamic interactions in colloidal gelation

72   0   0.0 ( 0 )
 نشر من قبل Kunimasa Miyazaki
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this letter, we investigate several aspects related to the effect of hydrodynamics interactions on phase separation-induced gelation of colloidal particles. We explain physically the observation of Tanaka and Araki[Phys. Rev. Lett. {bf 85}, 1338 (2000)] of hydrodynamic stabilization of cellular network structures in two dimensions. We demonstrate that hydrodynamic interactions have only a minor quantitative influence on the structure of transient gels in three dimensions. We discuss some experimental implications of our results.



قيم البحث

اقرأ أيضاً

Aqueous dispersion of Laponite, when exposed to carbon dioxide environment leads to in situ inducement of magnesium and lithium ions, which is, however absent when dispersion is exposed to air. Consequently, in the rheological experiments, Laponite d ispersion preserved under carbon dioxide shows more spectacular enhancement in the elastic and viscous moduli as a function of time compared to that exposed to air. By measuring concentration of all the ions present in a dispersion as well as change in pH, the evolving inter-particle interactions among the Laponite particles is estimated. DLVO analysis of a limiting case is performed, wherein two particles approach each other in a parallel fashion a situation with maximum repulsive interactions. Interestingly it is observed that DLVO analysis explains the qualitative details of an evolution of elastic and viscous moduli remarkably well thereby successfully relating the macroscopic phenomena to the microscopic interactions.
Colloidal suspensions that are out of thermodynamic equilibrium undergo physical aging wherein their structure evolves to lower the free energy. In aqueous suspension of Laponite, physical aging accompanies increases of elastic and viscous moduli as a function of time. In this work we study temporal evolution of elastic and viscous moduli at different frequencies and observe that freshly prepared aqueous suspension of Laponite demonstrates identical rheological behavior reported for the crosslinking polymeric materials undergoing chemical gelation. Consequently at a certain time tan{delta} is observed to be independent of frequency. However, for samples preserved under rest condition for longer duration before applying the shear melting, the liquid to solid transition subsequent to shear melting shows greater deviation from classical gelation. We also obtain continuous relaxation time spectra from the frequency dependence of viscous modulus. We observe that, with increase in the rest time, continuous relaxation time spectrum shows gradual variation from negative slope, describing dominance of fast relaxation modes to positive slope representing dominance of slow relaxation modes. We propose that the deviation from gelation behavior for the shear melted suspensions originates from inability of shear melting to completely break the percolated structure thereby creating unbroken aggregates. The volume fraction of such unbroken aggregates increases with the rest time. For small rest times presence of fewer number of unbroken aggregates cause deviation from the classical gelation. On the other hand, at high rest times presence of greater fraction of unbroken aggregates subsequent to shear melting demonstrate dynamic arrest leading to inversion of relaxation time spectra.
Colloidal particles with strong, short-ranged attractions can form a gel. We simulate this process without and with hydrodynamic interactions (HI), using the lattice-Boltzmann method to account for presence of a thermalized solvent. We show that HI s peed up and slow down gelation at low and high volume fractions, respectively. The transition between these two regimes is linked to the existence of a percolating cluster shortly after quenching the system. However, when we compare gels at matched structural age, we find nearly indistinguishable structures with and without HI. Our result explains longstanding, unresolved conflicts in the literature.
175 - E. Del Gado , W. Kob 2007
We investigate the gel formation from the equilibrium sol phase in a simple model that has the characteristics of (colloidal) gel-forming systems at a finite temperature. At low volume fraction and low temperatures, particles are linked by long-livin g bonds and form an open percolating network. By means of molecular dynamics simulations, we study the lifetime of bonds and nodes of the gel network in order to relate these quantities to the complex relaxation dynamics observed.
Computer simulations were used to study the gel transition occurring in colloidal systems with short range attractions. A colloid-polymer mixture was modelled and the results were compared with mode coupling theory expectations and with the results f or other systems (hard spheres and Lennard Jones). The self-intermediate scattering function and the mean squared displacement were used as the main dynamical quantities. Two different colloid packing fractions have been studied. For the lower packing fraction, $alpha$-scaling holds and the wave-vector analysis of the correlation function shows that gelation is a regular non-ergodicity transition within MCT. The leading mechanism for this novel non-ergodicity transition is identified as bond formation caused by the short range attraction. The time scale and diffusion coefficient also show qualitatively the expected behaviour, although different exponents are found for the power-law divergences of these two quantities. The non-Gaussian parameter was also studied and very large correction to Gaussian behaviour found. The system with higher colloid packing fraction shows indications of a nearby high-order singularity, causing $alpha$-scaling to fail, but the general expectations for non-ergodicity transitions still hold.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا