ﻻ يوجد ملخص باللغة العربية
Colloidal particles with strong, short-ranged attractions can form a gel. We simulate this process without and with hydrodynamic interactions (HI), using the lattice-Boltzmann method to account for presence of a thermalized solvent. We show that HI speed up and slow down gelation at low and high volume fractions, respectively. The transition between these two regimes is linked to the existence of a percolating cluster shortly after quenching the system. However, when we compare gels at matched structural age, we find nearly indistinguishable structures with and without HI. Our result explains longstanding, unresolved conflicts in the literature.
We report rheological measurements of a noncolloidal particle suspension in a Newtonian solvent at 40% solid volume fraction. An anomalous, frequency-dependent complex viscosity is found under oscillatory shear (OS) flow, whereas a constant dynamic v
We study by simulation the physics of two colloidal particles in a cholesteric liquid crystal with tangential order parameter alignment at the particle surface. The effective force between the pair is attractive at short range and favors assembly of
In this letter, we investigate several aspects related to the effect of hydrodynamics interactions on phase separation-induced gelation of colloidal particles. We explain physically the observation of Tanaka and Araki[Phys. Rev. Lett. {bf 85}, 1338 (
We investigate the gel formation from the equilibrium sol phase in a simple model that has the characteristics of (colloidal) gel-forming systems at a finite temperature. At low volume fraction and low temperatures, particles are linked by long-livin
We introduce a model gel system in which colloidal forces, structure, and rheology are measured by balancing the requirements of rheological and microscopy techniques with those of optical tweezers. Sterically stabilized poly(methyl methacrylate) (PM