ﻻ يوجد ملخص باللغة العربية
Computer simulations were used to study the gel transition occurring in colloidal systems with short range attractions. A colloid-polymer mixture was modelled and the results were compared with mode coupling theory expectations and with the results for other systems (hard spheres and Lennard Jones). The self-intermediate scattering function and the mean squared displacement were used as the main dynamical quantities. Two different colloid packing fractions have been studied. For the lower packing fraction, $alpha$-scaling holds and the wave-vector analysis of the correlation function shows that gelation is a regular non-ergodicity transition within MCT. The leading mechanism for this novel non-ergodicity transition is identified as bond formation caused by the short range attraction. The time scale and diffusion coefficient also show qualitatively the expected behaviour, although different exponents are found for the power-law divergences of these two quantities. The non-Gaussian parameter was also studied and very large correction to Gaussian behaviour found. The system with higher colloid packing fraction shows indications of a nearby high-order singularity, causing $alpha$-scaling to fail, but the general expectations for non-ergodicity transitions still hold.
In this letter, we investigate several aspects related to the effect of hydrodynamics interactions on phase separation-induced gelation of colloidal particles. We explain physically the observation of Tanaka and Araki[Phys. Rev. Lett. {bf 85}, 1338 (
We theoretically study thermally activated elementary dynamical processes that precede full structural relaxation in ultra-dense particle liquids interacting via strong short range attractive forces. Our approach is based on a microscopic theory form
Extensive molecular dynamics simulations show that a short-range central potential, suited to model C60, undergoes a high temperature transition to a glassy phase characterized by the positional disorder of the constituent particles. Crystallization,
The aggregation of attractive colloids has been extensively studied from both theoretical and experimental perspectives as the fraction of solid particles is changed, and the range, type and strength of attractive or repulsive forces between particle
We investigate the gel formation from the equilibrium sol phase in a simple model that has the characteristics of (colloidal) gel-forming systems at a finite temperature. At low volume fraction and low temperatures, particles are linked by long-livin