ترغب بنشر مسار تعليمي؟ اضغط هنا

Simulation study of Non-ergodicity Transitions: Gelation in Colloidal Systems with Short Range Attractions

161   0   0.0 ( 0 )
 نشر من قبل Antonio M. Puertas
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Computer simulations were used to study the gel transition occurring in colloidal systems with short range attractions. A colloid-polymer mixture was modelled and the results were compared with mode coupling theory expectations and with the results for other systems (hard spheres and Lennard Jones). The self-intermediate scattering function and the mean squared displacement were used as the main dynamical quantities. Two different colloid packing fractions have been studied. For the lower packing fraction, $alpha$-scaling holds and the wave-vector analysis of the correlation function shows that gelation is a regular non-ergodicity transition within MCT. The leading mechanism for this novel non-ergodicity transition is identified as bond formation caused by the short range attraction. The time scale and diffusion coefficient also show qualitatively the expected behaviour, although different exponents are found for the power-law divergences of these two quantities. The non-Gaussian parameter was also studied and very large correction to Gaussian behaviour found. The system with higher colloid packing fraction shows indications of a nearby high-order singularity, causing $alpha$-scaling to fail, but the general expectations for non-ergodicity transitions still hold.



قيم البحث

اقرأ أيضاً

In this letter, we investigate several aspects related to the effect of hydrodynamics interactions on phase separation-induced gelation of colloidal particles. We explain physically the observation of Tanaka and Araki[Phys. Rev. Lett. {bf 85}, 1338 ( 2000)] of hydrodynamic stabilization of cellular network structures in two dimensions. We demonstrate that hydrodynamic interactions have only a minor quantitative influence on the structure of transient gels in three dimensions. We discuss some experimental implications of our results.
We theoretically study thermally activated elementary dynamical processes that precede full structural relaxation in ultra-dense particle liquids interacting via strong short range attractive forces. Our approach is based on a microscopic theory form ulated at the particle trajectory level built on the dynamic free energy concept and an explicit treatment of how attractions control physical bonding. Mean time scales for bond breaking, the early stage of cage escape, and a fixed non-Fickian displacement are analyzed in the repulsive glass, bonded repulsive (attractive) glass, fluid, and dense gel regimes. The theory predicts a strong length-scale-dependent growth of these time scales with attractive force strength at fixed packing fraction, a much weaker slowing down with density at fixed attraction strength, and a strong decoupling of the shorter bond breaking time with the other two time scales that are controlled mainly by perturbed steric caging. All results are in good accord with simulations, and additional testable predictions are made. The classic statistical mechanical projection approximation of replacing all bare attractive and repulsive forces with a single effective force determined by pair structure incurs major errors for describing processes associated with thermally activated escape from transiently localized states.
Extensive molecular dynamics simulations show that a short-range central potential, suited to model C60, undergoes a high temperature transition to a glassy phase characterized by the positional disorder of the constituent particles. Crystallization, melting and sublimation, which also take place during the simulation runs, are illustrated in detail. It turns out that vitrification and the mentioned phase transitions occur when the packing fraction of the system - defined in terms of an effective hard-core diameter - equals that of hard spheres at their own glass and melting transition, respectively. A close analogy also emerges between our findings and recent mode coupling theory calculations of structural arrest lines in a similar model of protein solutions. We argue that the conclusions of the present study might hold for a wide class of potentials currently employed to mimic interactions in complex fluids (some of which of biological interest), suggesting how to achieve at least qualitative predictions of vitrification and crystallization in those systems.
The aggregation of attractive colloids has been extensively studied from both theoretical and experimental perspectives as the fraction of solid particles is changed, and the range, type and strength of attractive or repulsive forces between particle s varies. The resulting gels consisting of disordered assemblies of attractive colloidal particles, have also been investigated with regards to percolation, phase separation, and the mechanical characteristics of the resulting fractal networks. Despite tremendous progress in our understanding of the gelation process, and the exploration of different routes for arresting the dynamics of attractive colloids, the complex interplay between convective transport processes and many-body effects in such systems has limited our ability to drive the system towards a specific configuration. Here we study a model attractive colloidal system over a wide range of particle characteristics and flow conditions undergoing aggregation far from equilibrium. The complex multiscale dynamics of the system can be understood using a Time-Rate-Transformation diagram adapted from understanding of materials processing in block copolymers, supercooled liquids and much stiffer glassy metals to direct targeted assembly of attractive colloidal particles.
181 - E. Del Gado , W. Kob 2007
We investigate the gel formation from the equilibrium sol phase in a simple model that has the characteristics of (colloidal) gel-forming systems at a finite temperature. At low volume fraction and low temperatures, particles are linked by long-livin g bonds and form an open percolating network. By means of molecular dynamics simulations, we study the lifetime of bonds and nodes of the gel network in order to relate these quantities to the complex relaxation dynamics observed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا