ترغب بنشر مسار تعليمي؟ اضغط هنا

Finite-Temperature Renormalization Group Analysis of Interaction Effects in 2D Lattices of Bose-Einstein Condensates

56   0   0.0 ( 0 )
 نشر من قبل Andrea Trombettoni
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Smerzi




اسأل ChatGPT حول البحث

By using a renormalization group analysis, we study the effect of interparticle interactions on the critical temperature at which the Berezinskii-Kosterlitz-Thouless (BKT) transition occurs for Bose-Einstein condensates loaded at finite temperature in a 2D optical lattice. We find that the critical temperature decreases as the interaction energy decreases; when U/J=36/pi one has a vanishing critical temperature, signaling the possibility of a quantum phase transition of BKT type.

قيم البحث

اقرأ أيضاً

Using the finite-temperature path integral Monte Carlo method, we investigate dilute, trapped Bose gases in a quasi-two dimensional geometry. The quantum particles have short-range, s-wave interactions described by a hard-sphere potential whose core radius equals its corresponding scattering length. The effect of both the temperature and the interparticle interaction on the equilibrium properties such as the total energy, the density profile, and the superfluid fraction is discussed. We compare our accurate results with both the semi-classical approximation and the exact results of an ideal Bose gas. Our results show that for repulsive interactions, (i) the minimum value of the aspect ratio, where the system starts to behave quasi-two dimensionally, increases as the two-body interaction strength increases, (ii) the superfluid fraction for a quasi-2D Bose gas is distinctly different from that for both a quasi-1D Bose gas and a true 3D system, i.e., the superfluid fraction for a quasi-2D Bose gas decreases faster than that for a quasi-1D system and a true 3D system with increasing temperature, and shows a stronger dependence on the interaction strength, (iii) the superfluid fraction for a quasi-2D Bose gas lies well below the values calculated from the semi-classical approximation, and (iv) the Kosterlitz-Thouless transition temperature decreases as the strength of the interaction increases.
We investigate the quantum fluctuation effects in the vicinity of the critical point of a $p$-orbital bosonic system in a square optical lattice using Wilsonian renormalization group, where the $p$-orbital bosons condense at nonzero momenta and displ ay rich phases including both time-reversal symmetry invariant and broken BEC states. The one-loop renormalization group analysis generates corrections to the mean-field phase boundaries. We also show the quantum fluctuations in the $p$-orbital system tend to induce the ordered phase but not destroy it via the the Coleman-Weinberg mechanism, which is qualitative different from the ordinary quantum fluctuation corrections to the mean-field phase boundaries in $s$-orbital systems. Finally we discuss the observation of these phenomena in the realistic experiment.
In this article, we present theoretical as well as experimental results on resonantly enhanced tunneling of Bose-Einstein condensates in optical lattices both in the linear case and for small nonlinearities. Our results demonstrate the usefulness of condensates in optical lattices for simulating Hamiltonians originally used for describing solid state phenomena.
Ultracold quantum gases provide a unique setting for studying and understanding the properties of interacting quantum systems. Here, we investigate a multi-component system of $^{87}$Rb--$^{39}$K Bose-Einstein condensates (BECs) with tunable interact ions both theoretically and experimentally. Such multi-component systems can be characterized by their miscibility, where miscible components lead to a mixed ground state and immiscible components form a phase-separated state. Here we perform the first full simulation of the dynamical expansion of this system including both BECs and thermal clouds, which allows for a detailed comparison with experimental results. In particular we show that striking features emerge in time-of-flight for BECs with strong interspecies repulsion, even for systems which were separated in situ by a large gravitational sag. An analysis of the center of mass positions of the BECs after expansion yields qualitative agreement with the homogeneous criterion for phase-separation, but reveals no clear transition point between the mixed and the separated phases. Instead one can identify a transition region, for which the presence of a gravitational sag is found to be advantageous. Moreover we analyze the situation where only one component is condensed and show that the density distribution of the thermal component also show some distinct features. Our work sheds new light on the analysis of multi-component systems after time-of-flight and will guide future experiments on the detection of miscibility in these systems.
We analyze time-of-flight absorption images obtained with dilute Bose-Einstein con-densates released from shaken optical lattices, both theoretically and experimentally. We argue that weakly interacting, ultracold quantum gases in kilohertz-driven op tical potentials constitute equilibrium systems characterized by a steady-state distri-bution of Floquet-state occupation numbers. Our experimental results consistently indicate that a driven ultracold Bose gas tends to occupy a single Floquet state, just as it occupies a single energy eigenstate when there is no forcing. When the driving amplitude is sufficiently high, the Floquet state possessing the lowest mean energy does not necessarily coincide with the Floquet state connected to the ground state of the undriven system. We observe strongly driven Bose gases to condense into the former state under such conditions, thus providing nontrivial examples of dressed matter waves.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا