ترغب بنشر مسار تعليمي؟ اضغط هنا

Electronic Structure and Magnetic Exchange Coupling in Ferromagnetic Full Heusler Alloys

83   0   0.0 ( 0 )
 نشر من قبل Richard Dronskowski V.
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Density-functional studies of the electronic structures and exchange interaction parameters have been performed for a series of ferromagnetic full Heusler alloys of general formula Co$_2$MnZ (Z = Ga, Si, Ge, Sn), Rh$_2$MnZ (Z = Ge, Sn, Pb), Ni$_2$MnSn, Cu$_2$MnSn and Pd$_2$MnSn, and the connection between the electronic spectra and the magnetic interactions have been studied. Different mechanisms contributing to the exchange coupling are revealed. The band dependence of the exchange parameters, their dependence on volume and valence electron concentration have been thoroughly analyzed within the Green function technique.

قيم البحث

اقرأ أيضاً

We have investigated the electronic and thermoelectric properties of half-Heusler alloys NiTZ (T = Sc, and Ti; Z = P, As, Sn, and Sb) having 18 valence electron. Calculations are performed by means of density functional theory and Boltzmann transport equation with constant relaxation time approximation, validated by NiTiSn. The chosen half-Heuslers are found to be an indirect band gap semiconductor, and the lattice thermal conductivity is comparable with the state-of-the-art thermoelectric materials. The estimated power factor for NiScP, NiScAs, and NiScSb reveals that their thermoelectric performance can be enhanced by appropriate doping rate. The value of ZT found for NiScP, NiScAs, and NiScSb are 0.46, 0.35, and 0.29, respectively at 1200 K.
Ni$_{50}$Mn$_{34}$In$_{16}$ undergoes a martensitic transformation around 250 K and exhibits a field induced reverse martensitic transformation and substantial magnetocaloric effects. We substitute small amounts Ga for In, which are isoelectronic, to carry these technically important properties to close to room temperature by shifting the martensitic transformation temperature.
First-principles calculations are used in order to investigate phonon anomalies in non-magnetic and magnetic Heusler alloys. Phonon dispersions for several systems in their cubic L2$mathrm{_1}$ structure were obtained along the [110] direction. We co nsider compounds which exhibit phonon instabilities and compare them with their stable counterparts. The analysis of the electronic structure allows us to identify the characteristic features leading to structural instabilities. The phonon dispersions of the unstable compounds show that, while the acoustic modes tend to soften, the optical modes disperse in a way which is significantly different from that of the stable structures. The optical modes that appear to disperse at anomalously low frequencies are Raman active, which is considered an indication of a stronger polarizability of the unstable systems. We show that phonon instability of the TA$_{2}$ mode in Heusler alloys is driven by interaction(repulsion) with the low energy optical vibrations. The optical modes show their unusual behavior due to covalent interactions which are additional bonding features incommensurate with the dominating metallicity in Heusler compounds.
Weyl fermions have recently been observed in several time-reversal-invariant semimetals and photonics materials with broken inversion symmetry. These systems are expected to have exotic transport properties such as the chiral anomaly. However, most d iscovered Weyl materials possess a substantial number of Weyl nodes close to the Fermi level that give rise to complicated transport properties. Here we predict, for the first time, a new family of Weyl systems defined by broken time-reversal symmetry, namely, Co-based magnetic Heusler materials XCo2Z (X = IVB or VB; Z = IVA or IIIA). To search for Weyl fermions in the centrosymmetric magnetic systems, we recall an easy and practical inversion invariant, which has been calculated to be -1, guaranteeing the existence of an odd number of pairs of Weyl fermions. These materials exhibit, when alloyed, only two Weyl nodes at the Fermi level - the minimum number possible in a condensed matter system. The Weyl nodes are protected by the rotational symmetry along the magnetic axis and separated by a large distance (of order 2$pi$) in the Brillouin zone. The corresponding Fermi arcs have been calculated as well. This discovery provides a realistic and promising platform for manipulating and studying the magnetic Weyl physics in experiments.
80 - Alexander Shick 2006
The {em around-mean-field} LSDA+U correlated band theory is applied to investigate the electronic and magnetic structure of $fcc$-Pu-Am alloys. Despite a lattice expansion caused by the Am atoms, neither tendency to 5$f$ localization nor formation of local magnetic moments on Pu atoms in Pu-Am alloys are found. The $5f$-manifolds in the alloys are calculated being very similar to a simple weighted superposition of elemental Pu and Am $5f$-states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا