ﻻ يوجد ملخص باللغة العربية
We have investigated the proof of the $H$ theorem within a manifestly covariant approach by considering the relativistic statistical theory developed in [Phy. Rev. E {bf 66}, 056125, 2002; {it ibid.} {bf 72}, 036108 2005]. In our analysis, however, we have not considered the so-called deformed mathematics as did in the above reference. As it happens in the nonrelativistic limit, the molecular chaos hypothesis is slightly extended within the $kappa$-formalism, and the second law of thermodynamics implies that the $kappa$ parameter lies on the interval [-1,1]. It is shown that the collisional equilibrium states (null entropy source term) are described by a $kappa$ power law generalization of the exponential Juttner distribution, e.g., $f(x,p)propto (sqrt{1+ kappa^2theta^2}+kappatheta)^{1/kappa}equivexp_kappatheta$, with $theta=alpha(x)+beta_mu p^mu$, where $alpha(x)$ is a scalar, $beta_mu$ is a four-vector, and $p^mu$ is the four-momentum. As a simple example, we calculate the relativistic $kappa$ power law for a dilute charged gas under the action of an electromagnetic field $F^{mu u}$. All standard results are readly recovered in the particular limit $kappato 0$.
An interesting connection between the Regge theory of scattering, the Veneziano amplitude, the Lee-Yang theorems in statistical mechanics and nonextensive Renyi entropy is addressed. In this scheme the standard entropy and the Renyi entropy appear to
The lectures provide a pedagogical introduction to the methods of CFT as applied to two-dimensional critical behaviour.
Recently Mazenko and Das and Mazenko introduced a non-equilibrium field theoretical approach to describe the statistical properties of a classical particle ensemble starting from the microscopic equations of motion of each individual particle. We use
In literature one can find many generalizations of the usual Leibniz derivative, such as Jackson derivative, Tsallis derivative and Hausdorff derivative. In this article we present a connection between Jackson derivative and recently proposed Hausdor
Using the integral transformation, the field-theoretical Hamiltonian of the statistical field theory of fluids is obtained, along with the microscopic expressions for the coefficients of the Hamiltonian. Applying this approach to the liquid-vapor int