ﻻ يوجد ملخص باللغة العربية
Emergence of half-integer filling factor states, such as nu=5/2 and 7/2, is found in quantum dots by using numerical many-electron methods. These states have interesting similarities and differences with their counterstates found in the two-dimensional electron gas. The nu=1/2 states in quantum dots are shown to have high overlaps with the composite fermion states. The lower overlap of the Pfaffian state indicates that electrons might not be paired in quantum dot geometry. The predicted nu=5/2 state has high spin polarization which may have impact on the spin transport through quantum dot devices.
Fractional quantum Hall states at half-integer filling factors have been observed in many systems beyond the $5/2$ and $7/2$ plateaus in GaAs quantum wells. This includes bilayer states in GaAs, several half-integer plateaus in ZnO-based heterostruct
In this review the physics of Pfaffian paired states, in the context of fractional quantum Hall effect, is discussed using field-theoretical approaches. The Pfaffian states are prime examples of topological ($p$-wave) Cooper pairing and are character
We study coherence and entanglement properties of the state space of a composite bi-fermion (two electrons pierced by $lambda$ magnetic flux lines) at one Landau site of a bilayer quantum Hall system. In particular, interlayer imbalance and entanglem
We theoretically study the quantum Hall effect (QHE) in graphene with an ac electric field. Based on the tight-binding model, the structure of the half-integer Hall plateaus at $sigma_{xy} = pm(n + 1/2)4e^2/h$ ($n$ is an integer) gets qualitatively c
We observe two-fold shell filling in the spectra of closed one-dimensional quantum dots formed in single-wall carbon nanotubes. Its signatures include a bimodal distribution of addition energies, correlations in the excitation spectra for different e