ترغب بنشر مسار تعليمي؟ اضغط هنا

Pfaffian paired states for half-integer fractional quantum Hall effect

196   0   0.0 ( 0 )
 نشر من قبل Jaksa Vucicevic
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this review the physics of Pfaffian paired states, in the context of fractional quantum Hall effect, is discussed using field-theoretical approaches. The Pfaffian states are prime examples of topological ($p$-wave) Cooper pairing and are characterized by non-Abelian statistics of their quasiparticles. Here we focus on conditions for their realization and competition among them at half-integer filling factors. Using the Dirac composite fermion description, in the presence of a mass term, we study the influence of Landau level mixing in selecting a particular Pfaffian state. While Pfaffian and anti-Pfaffian are selected when Landau level mixing is not strong, and can be taken into account perturbatively, the PH Pfaffian state requires non-perturbative inclusion of at least two Landau levels. Our findings, for small Landau level mixing, are in accordance with numerical investigations in the literature, and call for a non-perturbative approach in the search for PH Pfaffian correlations. We demonstrated that a method based on the Chern-Simons field-theoretical approach can be used to generate characteristic interaction pseudo-potentials for Pfaffian paired states.



قيم البحث

اقرأ أيضاً

158 - E. Berg , Y. Oreg , E.-A. Kim 2008
We propose ways to create and detect fractionally charged excitations in emph{integer} quantum Hall edge states. The charge fractionalization occurs due to the Coulomb interaction between electrons propagating on different edge channels. The fraction al charge of the soliton-like collective excitations can be observed in time resolved or frequency dependent shot noise measurements.
Protected edge modes are the cornerstone of topological states of matter. The simplest example is provided by the integer quantum Hall state at Landau level filling unity, which should feature a single chiral mode carrying electronic excitations. In the presence of a smooth confining potential it was hitherto believed that this picture may only be partially modified by the appearance of additional counterpropagating integer-charge modes. Here, we demonstrate the breakdown of this paradigm: The system favors the formation of edge modes supporting fractional excitations. This accounts for previous observations, and leads to additional predictions amenable to experimental tests.
275 - I. Skachko , X. Du , F. Duerr 2009
We report the observation of the quantized Hall effect in suspended graphene probed with a two-terminal lead geometry. The failure of earlier Hall-bar measurements is discussed and attributed to the placement of voltage probes in mesoscopic samples. New quantized states are found at integer Landau level fillings outside the sequence 2,6,10.., as well as at a fractional filling u=1/3. Their presence is revealed by plateaus in the two-terminal conductance which appear in magnetic fields as low as 2 Tesla at low temperatures and persist up to 20 Kelvin in 12 Tesla. The excitation gaps, extracted from the data with the help of a theoretical model, are found to be significantly larger than in GaAs based electron systems.
The interplay between interaction and disorder-induced localization is of fundamental interest. This article addresses localization physics in the fractional quantum Hall state, where both interaction and disorder have nonperturbative consequences. W e provide compelling theoretical evidence that the localization of a single quasiparticle of the fractional quantum Hall state at filling factor $ u=n/(2n+1)$ has a striking {it quantitative} correspondence to the localization of a single electron in the $(n+1)$th Landau level. By analogy to the dramatic experimental manifestations of Anderson localization in integer quantum Hall effect, this leads to predictions in the fractional quantum Hall regime regarding the existence of extended states at a critical energy, and the nature of the divergence of the localization length as this energy is approached. Within a mean field approximation these results can be extended to situations where a finite density of quasiparticles is present.
225 - H. Saarikoski , E. Tolo , A. Harju 2008
When a gas of electrons is confined to two dimensions, application of a strong magnetic field may lead to startling phenomena such as emergence of electron pairing. According to a theory this manifests itself as appearance of the fractional quantum H all effect with a quantized conductivity at an unusual half-integer nu=5/2 Landau level filling. Here we show that similar electron pairing may occur in quantum dots where the gas of electrons is trapped by external electric potentials into small quantum Hall droplets. However, we also find theoretical and experimental evidence that, depending on the shape of the external potential, the paired electron state can break down, which leads to a fragmentation of charge and spin densities into incompressible domains. The fragmentation of the quantum Hall states could be an issue in the proposed experiments that aim to probe for non-abelian quasi-particle characteristics of the nu=5/2 quantum Hall state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا