ﻻ يوجد ملخص باللغة العربية
To elucidate the nature of the superconducting ground state of the geometrically frustrated pyrochlore KOs2O6 (Tc=9.6K), the thermal conductivity was measured down to low temperatures (~Tc/100). We found that the quasiparticle mean free path is strikingly enhanced below a transition at Tp=7.5K, indicating enormous electron inelastic scattering in the normal state. In a magnetic field the conduction at T ->0K is nearly constant up to ~0.4Hc2, in contrast with the rapid growth expected for superconductors with an anisotropic gap. This unambiguously indicates a fully gapped superconductivity, in contrast to the previous studies. These results highlight that KOs2O6 is unique among superconductors with strong electron correlations.
To assess electron correlation and electron-phonon coupling in the recently discovered beta-pyrochlores KOs2O6 and RbOs2O6, we have performed specific heat measurements in magnetic fields up to 14 T. We present data from high quality single crystalli
In search of the origin of superconductivity in diluted rhenium superconductors and their significantly enhanced $T_c$ compared to pure Be (0.026 K), we investigated the intermetallic ReBe$_{22}$ compound, mostly by means of muon-spin rotation/relaxa
Resistivity and specific heat have been measured on a single crystalline sample of the beta-pyrochlore oxide superconductor, KOs2O6. It is found that a second peak in specific heat, which may evidence an unknown phase transition, appears around Tp ~
We investigate the superconducting gap function of topological superconductor PbTaSe$_2$. Temperature, magnetic field, and three-dimensional (3D) field-angle dependences of the specific heat prove that the superconductivity of PbTaSe$_2$ is fully-gap
We performed thermal conductivity measurements on a single crystal of the ferromagnetic superconductorUCoGe under magnetic field. Two different temperature dependencies of the thermal conductivity are observed, for H//b linear at low magnetic field a