ترغب بنشر مسار تعليمي؟ اضغط هنا

Fully gapped superconductivity without sign reversal in the topological superconductor PbTaSe$_2$

173   0   0.0 ( 0 )
 نشر من قبل Yue Sun
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the superconducting gap function of topological superconductor PbTaSe$_2$. Temperature, magnetic field, and three-dimensional (3D) field-angle dependences of the specific heat prove that the superconductivity of PbTaSe$_2$ is fully-gapped, with two isotropic $s$-wave gaps. The pair-breaking effect is probed by systematically increasing non-magnetic disorders through H$^+$-irradiations. The superconducting transition temperature, $T_{rm{c}}$, is found to be robust against disorders, which suggests that the pairing should be sign-preserved rather than sign-reversed.



قيم البحث

اقرأ أيضاً

We investigated the superconducting gap structure of SrNi$_2$P$_{2}$ ($T_c$=1.4 K) via low-temperature magneto-thermal conductivity $kappa(T,H)$ measurements. Zero field thermal conductivity $kappa$ decreases exponentially $kappa propto$ exp($-aT_c/T $) with $a$=1.5, in accord with the BCS theory, and rolls over to a phonon-like $kappapropto T^3$ behavior at low temperature, similar to a number of conventional s-wave superconductors. In addition, we observed a concave field dependence of the residual linear term $kappa_0(H)/T$. These facts strongly rule out the presence of nodes in the superconducting energy gap of SrNi$_2$P$_{2}$. Together with a fully gapped Fermi surface in the superconducting state of BaNi$_2$As$_{2}$ ($T_c$=0.6-0.7 K), demonstrated in our recent work, these results lead us to postulate that fully gapped superconductivity is a universal feature of Ni-based pnictide superconductors.
94 - C. Q. Xu , R. Sankar , W. Zhou 2017
A first-order-like resistivity hysteresis is induced by a subtle structural transition under hydrostatic pressure in the topological nodal-line superconductor PbTaSe$_2$. This structure transition is quickly suppressed to zero at pressure $sim$0.25 G Pa. As a result, superconductivity shows a marked suppression, accompanied with fundamental changes in the magnetoresistance and Hall resistivity, suggesting a Lifshitz transition around $sim$0.25 GPa. The first principles calculations show that the spin-orbit interactions partially gap out the Dirac nodal line around $K$ point in the Brillouin zone upon applying a small pressure, whilst the Dirac states around $H$ point are completely destroyed. The calculations further reveal a second structural phase transition under a pressure as high as $sim$30 GPa, through which a transition from a topologically nontrivial phase to a trivial phase is uncovered, with a superconducting dome emerging under this high-pressure phase.
The recent discovery of the topologically protected surface states in the beta-phase of PdBi2 has reignited the research interest in this class of superconductors. Here, we show results of our muon spin relaxation and rotation (muSR) measurements car ried out to investigate the superconducting and magnetic properties and the topological effect in the superconducting ground state of beta-PdBi2. Zero-field muSR data reveal that no sizeable spontaneous magnetization arises with the onset of superconductivity implying that the time reversal symmetry is preserved in the superconducting state of beta-PdBi2. Further, a strong diamagnetic shift of the applied field has been observed in the transverse-field (TF) muSR experiments, indicating that any triplet-pairing channel, if present, does not dominate the superconducting condensate. Using TF-muSR, we estimate that the magnetic penetration depth is 263(10) nm at zero temperature. Temperature dependence of the magnetic penetration depth provides evidence for the existence of a nodeless single s-wave type isotropic energy gap of 0.78(1) meV at zero temperature. Our results further suggest that the topologically protected surface states have no effect on the bulk of the superconductor.
In exotic superconductors including high-$T_c$ copper-oxides, the interactions mediating electron Cooper-pairing are widely considered to have a magnetic rather than the conventional electron-phonon origin. Interest in such exotic pairing was initiat ed by the 1979 discovery of heavy-fermion superconductivity in CeCu$_2$Si$_2$, which exhibits strong antiferromagnetic fluctuations. A hallmark of unconventional pairing by anisotropic repulsive interactions is that the superconducting energy gap changes sign as a function of the electron momentum, often leading to nodes where the gap goes to zero. Here, we report low-temperature specific heat, thermal conductivity and magnetic penetration depth measurements in CeCu$_2$Si$_2$, demonstrating the absence of gap nodes at any point on the Fermi surface. Moreover, electron-irradiation experiments reveal that the superconductivity survives even when the electron mean free path becomes substantially shorter than the superconducting coherence length. This indicates that superconductivity is robust against impurities, implying that there is no sign change in the gap function. These results show that, contrary to long-standing belief, heavy electrons with extremely strong Coulomb repulsions can condense into a fully-gapped s-wave superconducting state, which has an on-site attractive pairing interaction.
466 - T. Shang , A. Amon , D. Kasinathan 2019
In search of the origin of superconductivity in diluted rhenium superconductors and their significantly enhanced $T_c$ compared to pure Be (0.026 K), we investigated the intermetallic ReBe$_{22}$ compound, mostly by means of muon-spin rotation/relaxa tion ($mu$SR). At a macroscopic level, its bulk superconductivity (with $T_c=9.4$ K) was studied via electrical resistivity, magnetization, and heat-capacity measurements. The superfluid density, as determined from transverse-field $mu$SR and electronic specific-heat measurements, suggest that ReBe$_{22}$ is a fully-gapped superconductor with some multigap features. The larger gap value, $Delta_0^l=1.78$ k$_mathrm{B}T_c$, with a weight of almost 90%, is slightly higher than that expected from the BCS theory in the weak-coupling case. The multigap feature, rather unusal for an almost elemental superconductor, is further supported by the field-dependent specific-heat coefficient, the temperature dependence of the upper critical field, as well as by electronic band-structure calculations. The absence of spontaneous magnetic fields below $T_c$, as determined from zero-field $mu$SR measurements, indicates a preserved time-reversal symmetry in the superconducting state of ReBe$_{22}$. In general, we find that a dramatic increase in the density of states at the Fermi level and an increase in the electron-phonon coupling strength, both contribute to the highly enhanced $T_c$ value of ReBe$_{22}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا