ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhanced $T_c$ and multiband superconductivity in the fully-gapped ReBe$_{22}$ superconductor

467   0   0.0 ( 0 )
 نشر من قبل Tian Shang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In search of the origin of superconductivity in diluted rhenium superconductors and their significantly enhanced $T_c$ compared to pure Be (0.026 K), we investigated the intermetallic ReBe$_{22}$ compound, mostly by means of muon-spin rotation/relaxation ($mu$SR). At a macroscopic level, its bulk superconductivity (with $T_c=9.4$ K) was studied via electrical resistivity, magnetization, and heat-capacity measurements. The superfluid density, as determined from transverse-field $mu$SR and electronic specific-heat measurements, suggest that ReBe$_{22}$ is a fully-gapped superconductor with some multigap features. The larger gap value, $Delta_0^l=1.78$ k$_mathrm{B}T_c$, with a weight of almost 90%, is slightly higher than that expected from the BCS theory in the weak-coupling case. The multigap feature, rather unusal for an almost elemental superconductor, is further supported by the field-dependent specific-heat coefficient, the temperature dependence of the upper critical field, as well as by electronic band-structure calculations. The absence of spontaneous magnetic fields below $T_c$, as determined from zero-field $mu$SR measurements, indicates a preserved time-reversal symmetry in the superconducting state of ReBe$_{22}$. In general, we find that a dramatic increase in the density of states at the Fermi level and an increase in the electron-phonon coupling strength, both contribute to the highly enhanced $T_c$ value of ReBe$_{22}$.



قيم البحث

اقرأ أيضاً

We investigate the superconducting gap function of topological superconductor PbTaSe$_2$. Temperature, magnetic field, and three-dimensional (3D) field-angle dependences of the specific heat prove that the superconductivity of PbTaSe$_2$ is fully-gap ped, with two isotropic $s$-wave gaps. The pair-breaking effect is probed by systematically increasing non-magnetic disorders through H$^+$-irradiations. The superconducting transition temperature, $T_{rm{c}}$, is found to be robust against disorders, which suggests that the pairing should be sign-preserved rather than sign-reversed.
To elucidate the nature of the superconducting ground state of the geometrically frustrated pyrochlore KOs2O6 (Tc=9.6K), the thermal conductivity was measured down to low temperatures (~Tc/100). We found that the quasiparticle mean free path is strik ingly enhanced below a transition at Tp=7.5K, indicating enormous electron inelastic scattering in the normal state. In a magnetic field the conduction at T ->0K is nearly constant up to ~0.4Hc2, in contrast with the rapid growth expected for superconductors with an anisotropic gap. This unambiguously indicates a fully gapped superconductivity, in contrast to the previous studies. These results highlight that KOs2O6 is unique among superconductors with strong electron correlations.
We investigated the superconducting gap structure of SrNi$_2$P$_{2}$ ($T_c$=1.4 K) via low-temperature magneto-thermal conductivity $kappa(T,H)$ measurements. Zero field thermal conductivity $kappa$ decreases exponentially $kappa propto$ exp($-aT_c/T $) with $a$=1.5, in accord with the BCS theory, and rolls over to a phonon-like $kappapropto T^3$ behavior at low temperature, similar to a number of conventional s-wave superconductors. In addition, we observed a concave field dependence of the residual linear term $kappa_0(H)/T$. These facts strongly rule out the presence of nodes in the superconducting energy gap of SrNi$_2$P$_{2}$. Together with a fully gapped Fermi surface in the superconducting state of BaNi$_2$As$_{2}$ ($T_c$=0.6-0.7 K), demonstrated in our recent work, these results lead us to postulate that fully gapped superconductivity is a universal feature of Ni-based pnictide superconductors.
We have performed low-temperature specific heat $C$ and thermal conductivity $kappa$ measurements on the Ni-pnictide superconductors BaNi$_2$As$_2$ ($T_mathrm{c}$=0.7 K and SrNi$_2$P$_2$ ($T_mathrm{c}$=1.4 K). The temperature dependences $C(T)$ and $ kappa(T)$ of the two compounds are similar to the results of a number of s-wave superconductors. Furthermore, the concave field responses of the residual $kappa$ for BaNi$_2$As$_2$ rules out the presence of nodes on the Fermi surfaces. We postulate that fully gapped superconductivity could be universal for Ni-pnictide superconductors. Specific heat data on Ba$_{0.6}$La$_{0.4}$Ni$_2$As$_2$ shows a mild suppression of $T_mathrm{c}$ and $H_mathrm{c2}$ relative to BaNi$_2$As$_2$.
The recent discovery of the topologically protected surface states in the beta-phase of PdBi2 has reignited the research interest in this class of superconductors. Here, we show results of our muon spin relaxation and rotation (muSR) measurements car ried out to investigate the superconducting and magnetic properties and the topological effect in the superconducting ground state of beta-PdBi2. Zero-field muSR data reveal that no sizeable spontaneous magnetization arises with the onset of superconductivity implying that the time reversal symmetry is preserved in the superconducting state of beta-PdBi2. Further, a strong diamagnetic shift of the applied field has been observed in the transverse-field (TF) muSR experiments, indicating that any triplet-pairing channel, if present, does not dominate the superconducting condensate. Using TF-muSR, we estimate that the magnetic penetration depth is 263(10) nm at zero temperature. Temperature dependence of the magnetic penetration depth provides evidence for the existence of a nodeless single s-wave type isotropic energy gap of 0.78(1) meV at zero temperature. Our results further suggest that the topologically protected surface states have no effect on the bulk of the superconductor.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا