ترغب بنشر مسار تعليمي؟ اضغط هنا

On the problem of many-body localization

35   0   0.0 ( 0 )
 نشر من قبل Denis Basko
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We review recent progress in the study of transport properties of interacting electrons subject to a disordered potential which is strong enough to localize all single-particle states. This review may also serve as a guide to the recent paper by the authors [Annals of Physics (2006), in press]. Here we skip most of the technical details and make an attempt to discuss the physical grounds of the final-temperature metal-insulator transition described in the above-mentioned paper.

قيم البحث

اقرأ أيضاً

35 - D. M. Basko , I. L. Aleiner , 2007
Recently, it was predicted that if all one-electron states in a non-interacting disordered system are localized, the interaction between electrons in the absence of coupling to phonons leads to a finite-temperature metal-insulator trnasition. Here we show that even in the presence of a weak coupling to phonons the transition manifests itself (i) in the nonlinear conduction, leading to a bistable $I$-$V$ curve, (ii) by a dramatic enhancement of the nonequilibrium current noise near the transition.
We generalize Pages result on the entanglement entropy of random pure states to the many-body eigenstates of realistic disordered many-body systems subject to long range interactions. This extension leads to two principal conclusions: first, for incr easing disorder the shells of constant energy supporting a systems eigenstates fill only a fraction of its full Fock space and are subject to intrinsic correlations absent in synthetic high-dimensional random lattice systems. Second, in all regimes preceding the many-body localization transition individual eigenstates are thermally distributed over these shells. These results, corroborated by comparison to exact diagonalization for an SYK model, are at variance with the concept of non-ergodic extended states in many-body systems discussed in the recent literature.
We show that, in a many-body system, all particles can be strongly confined to the initially occupied sites for a time that scales as a high power of the ratio of the bandwidth of site energies to the hopping amplitude. Such time-domain formulation i s complementary to the formulation of the many-body localization of all stationary states with a large localization length. The long localization lifetime is achieved by constructing a periodic sequence of site energies with a large period in a one-dimensional chain. The scaling of the localization lifetime is independent of the number of particles for a broad range of the coupling strength. The analytical results are confirmed by numerical calculations.
Recent work by De Roeck et al. [Phys. Rev. B 95, 155129 (2017)] has argued that many-body localization (MBL) is unstable in two and higher dimensions due to a thermalization avalanche triggered by rare regions of weak disorder. To examine these argum ents, we construct several models of a finite ergodic bubble coupled to an Anderson insulator of non-interacting fermions. We first describe the ergodic region using a GOE random matrix and perform an exact diagonalization study of small systems. The results are in excellent agreement with a refined theory of the thermalization avalanche that includes transient finite-size effects, lending strong support to the avalanche scenario. We then explore the limit of large system sizes by modeling the ergodic region via a Hubbard model with all-to-all random hopping: the combined system, consisting of the bubble and the insulator, can be reduced to an effective Anderson impurity problem. We find that the spectral function of a local operator in the ergodic region changes dramatically when coupling to a large number of localized fermionic states---this occurs even when the localized sites are weakly coupled to the bubble. In principle, for a given size of the ergodic region, this may arrest the avalanche. However, this back-action effect is suppressed and the avalanche can be recovered if the ergodic bubble is large enough. Thus, the main effect of the back-action is to renormalize the critical bubble size.
The celebrated Dyson singularity signals the relative delocalization of single-particle wave functions at the zero-energy symmetry point of disordered systems with a chiral symmetry. Here we show that analogous zero modes in interacting quantum syste ms can fully localize at sufficiently large disorder, but do so less strongly than nonzero modes, as signifed by their real-space and Fock-space localization characteristics. We demonstrate this effect in a spin-1 Ising chain, which naturally provides a chiral symmetry in an odd-dimensional Hilbert space, thereby guaranteeing the existence of a many-body zero mode at all disorder strengths. In the localized phase, the bipartite entanglement entropy of the zero mode follows an area law, but is enhanced by a system-size-independent factor of order unity when compared to the nonzero modes. Analytically, this feature can be attributed to a specific zero-mode hybridization pattern on neighboring spins. The zero mode also displays a symmetry-induced even-odd and spin-orientation fragmentation of excitations, characterized by real-space spin correlation functions, which generalizes the sublattice polarization of topological zero modes in noninteracting systems, and holds at any disorder strength.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا