ﻻ يوجد ملخص باللغة العربية
We show that, in a many-body system, all particles can be strongly confined to the initially occupied sites for a time that scales as a high power of the ratio of the bandwidth of site energies to the hopping amplitude. Such time-domain formulation is complementary to the formulation of the many-body localization of all stationary states with a large localization length. The long localization lifetime is achieved by constructing a periodic sequence of site energies with a large period in a one-dimensional chain. The scaling of the localization lifetime is independent of the number of particles for a broad range of the coupling strength. The analytical results are confirmed by numerical calculations.
Motivated by the question of whether disorder is a prerequisite for localization to occur in quantum many-body systems, we study a frustrated one-dimensional spin chain, which supports localized many-body eigenstates in the absence of disorder. When
In the presence of disorder, an interacting closed quantum system can undergo many-body localization (MBL) and fail to thermalize. However, over long times even weak couplings to any thermal environment will necessarily thermalize the system and eras
We present a fully analytical description of a many body localization (MBL) transition in a microscopically defined model. Its Hamiltonian is the sum of one- and two-body operators, where both contributions obey a maximum-entropy principle and have n
We experimentally study many-body localization (MBL) with ultracold atoms in a weak one-dimensional quasiperiodic potential, which in the noninteracting limit exhibits an intermediate phase that is characterized by a mobility edge. We measure the tim
We study a quantum interacting spin system subject to an external drive and coupled to a thermal bath of spatially localized vibrational modes, serving as a model of Dynamic Nuclear Polarization. We show that even when the many-body eigenstates of th