ﻻ يوجد ملخص باللغة العربية
We generalize Pages result on the entanglement entropy of random pure states to the many-body eigenstates of realistic disordered many-body systems subject to long range interactions. This extension leads to two principal conclusions: first, for increasing disorder the shells of constant energy supporting a systems eigenstates fill only a fraction of its full Fock space and are subject to intrinsic correlations absent in synthetic high-dimensional random lattice systems. Second, in all regimes preceding the many-body localization transition individual eigenstates are thermally distributed over these shells. These results, corroborated by comparison to exact diagonalization for an SYK model, are at variance with the concept of non-ergodic extended states in many-body systems discussed in the recent literature.
We discuss the problem of localization in two dimensional electron systems in the quantum Hall (single Landau level) regime. After briefly summarizing the well-studied problem of Anderson localization in the non-interacting case, we concentrate on th
Ergodicity in quantum many-body systems is - despite its fundamental importance - still an open problem. Many-body localization provides a general framework for quantum ergodicity, and may therefore offer important insights. However, the characteriza
We study the eigenstates of a paradigmatic model of many-body localization in the Fock basis constructed out of the natural orbitals. By numerically studying the participation ratio, we identify a sharp crossover between different phases at a disorde
We investigate a many-body localization transition based on a Boltzmann transport theory. Introducing weak localization corrections into a Boltzmann equation, Hershfield and Ambegaokar re-derived the Wolfle-Vollhardt self-consistent equation for the