ﻻ يوجد ملخص باللغة العربية
The field dependences of the Labush parameter in nonmagnetic borocarbides are measured by a method that does not require achieving a critical state. The expected values of the critical current are estimated. The values obtained are two order of magnitude greater than the results of direct measurements performed on the basis of transport (magnetic) experiments. A giant peak effect, which the collective pinning model describes quantitavely well, is observed in the field dependences of the Labush parameter in Y-based borocarbides.
We propose a superlattice model to describe superconductivity in layered materials, such as the borocarbide families with the chemical formulae $RT_2$B$_2$C and $RT$BC, with $R$ being (essentially) a rare earth, and $T$ a transition metal. We assume
The Hall effect in LuNi_2B_2C and YNi_2B_2C borocarbides has been investigated in normal and superconducting mixed states. The Hall resistivity rho_{xy} for both compounds is negative in the normal as well as in the mixed state and has no sign revers
In this study pseudoquaternary rare-earth nickel borocarbide superconductors RxR1-xNi2B2C have been investigated predominantly in the diluted limit x << 1 or (1 x) << 1. In all of these materials structural disorder results in a reduction of the supe
We examine the current driven dynamics for vortices interacting with conformal crystal pinning arrays and compare to the dynamics of vortices driven over random pinning arrays. We find that the pinning is enhanced in the conformal arrays over a wide
The temperature and magnetic field dependence of the specific heat cp(T,H) in the superconducting mixed state as well as the upper critical field Hc2(T) have been measured for polycrystalline Y_xLu_{1-x}Ni_2B_2C and Y(Ni_{1-y}Pt_y)_2B_2C samples. The