ترغب بنشر مسار تعليمي؟ اضغط هنا

Pinning in nonmagnetic borocarbides

212   0   0.0 ( 0 )
 نشر من قبل Vyacheslav Fil
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The field dependences of the Labush parameter in nonmagnetic borocarbides are measured by a method that does not require achieving a critical state. The expected values of the critical current are estimated. The values obtained are two order of magnitude greater than the results of direct measurements performed on the basis of transport (magnetic) experiments. A giant peak effect, which the collective pinning model describes quantitavely well, is observed in the field dependences of the Labush parameter in Y-based borocarbides.



قيم البحث

اقرأ أيضاً

We propose a superlattice model to describe superconductivity in layered materials, such as the borocarbide families with the chemical formulae $RT_2$B$_2$C and $RT$BC, with $R$ being (essentially) a rare earth, and $T$ a transition metal. We assume a single band in which electrons feel a local attractive interaction (negative Hubbard-$U$) on sites representing the $T$B layers, while U=0 on sites representing the $R$C layers; the multi-band structure is taken into account minimally through a band offset $epsilon$. The one-dimensional model is studied numerically through the calculation of the charge gap, the Drude weight, and of the pairing correlation function. A comparison with the available information on the nature of the electronic ground state (metallic or superconducting) indicates that the model provides a systematic parametrization of the whole borocarbide family.
The Hall effect in LuNi_2B_2C and YNi_2B_2C borocarbides has been investigated in normal and superconducting mixed states. The Hall resistivity rho_{xy} for both compounds is negative in the normal as well as in the mixed state and has no sign revers al below T_c typical for high-T_c superconductors. In the mixed state the behavior of both systems is quite similar. The scaling relation rho_{xy}simrho_{xx}^beta (rho_{xx} is the longitudinal resistivity) was found with beta=2.0 and 2.1 for annealed Lu- and Y-based compounds, respectively. The scaling exponent beta decreases with increasing degree of disorder and can be varied by annealing. This is attributed to a variation of the strength of flux pinning. In the normal state weakly temperature dependent Hall coefficients were observed for both compounds. A distinct nonlinearity in the rho_{xy} dependence on field H was found for LuNi_2B_2C in the normal state below 40K, accompanied by a large magnetoresistance (MR) reaching +90% for H=160kOe at T=20K. At the same time for YNi_2B_2C only linear rho_{xy}(H) dependences were observed in the normal state with an approximately three times lower MR value. This difference in the normal state behavior of the very similar Lu- and Y-based borocarbides seems to be connected with the difference in the topology of the Fermi surface of these compounds.
In this study pseudoquaternary rare-earth nickel borocarbide superconductors RxR1-xNi2B2C have been investigated predominantly in the diluted limit x << 1 or (1 x) << 1. In all of these materials structural disorder results in a reduction of the supe rconducting transition temperature Tc . Depending on the selection of the rare earth elements R and R this disorder induced deterioration of superconductivity is combined with magnetic pair breaking of Abrikosov-Gorkov type or pair breaking of non-magnetic impurities in antiferromagnetic superconductors (Morozov-type of pair breaking).
We examine the current driven dynamics for vortices interacting with conformal crystal pinning arrays and compare to the dynamics of vortices driven over random pinning arrays. We find that the pinning is enhanced in the conformal arrays over a wide range of fields, consistent with previous results from flux gradient-driven simulations. At fields above this range, the effectiveness of the pinning in the moving vortex state can be enhanced in the random arrays compared to the conformal arrays, leading to crossing of the velocity-force curves.
311 - D. Lipp , M. Schneider , A. Gladun 2001
The temperature and magnetic field dependence of the specific heat cp(T,H) in the superconducting mixed state as well as the upper critical field Hc2(T) have been measured for polycrystalline Y_xLu_{1-x}Ni_2B_2C and Y(Ni_{1-y}Pt_y)_2B_2C samples. The linear-in-T electronic specific heat contribution gamma(H)T exhibits significant deviations from the usual linear-in-H law for all x and y the transition metal site (T) resulting in a disorder dependent negative curvature of gamma(H). The deviations from that linear behaviour of our unsubstituted samples are the largest reported so far for any superconductor. The H_c2(T) data point to the quasi-clean limit for (Y,Lu)-substitutions and to a transition to the quasi-dirty limit for (Ni,Pt)-substitutions. The gamma(H) dependence is discussed in the unitary d-wave as well as in the quasi-clean s-wave limits. From a consideration of gamma(H) data only, d-wave pairing cannot be ruled out.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا