ترغب بنشر مسار تعليمي؟ اضغط هنا

Interplay between itinerant and localized states in CaMn1-xRuxO3 (x =0 - 0.5) manganites

76   0   0.0 ( 0 )
 نشر من قبل Vladimir Markovich
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic properties of polycrystalline CaMn1-xRuxO3 (x = 0 - 0.5) samples were investigated in the temperature range 4.2 - 250 K, under external magnetic field up to 15 kOe and under hydrostatic pressure up to 12 kbar. Transport properties of the samples with x = 0.1, 0.2, 0.4, 0.5 were also investigated under pressure up to 10 kbar. For x up to 0.4, the pressure was found to suppress ferromagnetic correlations and to increase the resistivity, while for x = 0.5 to act in the opposite way. While long ferromagnetic order is completely suppressed, in small clusters ferromagnetic correlations probably survive under pressure, as was revealed for CaMn0.9Ru0.1O3. The pressure effect on the magnetic interactions and on the volume of ferromagnetic phase was found to depend strongly on the Ru-content, and absolute value of the pressure coefficient of spontaneous magnetization was found to decrease practically linearly with increasing x in the range 0.1 < x < 0.5. The experimental data are discussed in the frame of proposed energy-level diagram, which includes magneto-impurity states at low and moderate Ru-doping and mixed-valence states of Ru presented by a strongly-correlated t2g-like band at heavy Ru-doping. An impact of disorder introduced by Ru-doping on the energy diagram and on derived magnetic interactions is discussed. Predictions of the model regarding the pressure effects on conductivity and temperature scales characteristic for magnetic interactions are in reasonable agreement with experiment.


قيم البحث

اقرأ أيضاً

We report the electronic and magnetic behaviour of the frustrated triangular metallic antiferromagnet 2H-AgNiO2 in high magnetic fields (54 T) using thermodynamic and transport measurements. Here localized d electrons are arranged on an antiferromagn etic triangular lattice nested inside a honeycomb lattice with itinerant d electrons. When the magnetic field is along the easy axis we observe a cascade of field-induced transitions, attributed to the competition between easy-axis anisotropy, geometrical frustration and coupling of the localized and itinerant system. The quantum oscillations data suggest that the Fermi surface is reconstructed by the magnetic order but in high fields magnetic breakdown orbits are possible. The itinerant electrons are extremely sensitive to scattering by spin fluctuations and a significant mass enhancement (~ 3) is found.
The evolution of the electronic structure and magnetic properties with Co substitution for Fe in the solid solution Fe$_{1-x}$Co$_x$Ga$_3$ was studied by means of electrical resistivity, magnetization, ab-initio band structure calculations, and nucle ar spin-lattice relaxation $1/T_1$ of the $^{69,71}$Ga nuclei. Temperature dependencies of the electrical resistivity reveal that the evolution from the semiconducting to the metallic state in the Fe$_{1-x}$Co$_x$Ga$_3$ system occurs at $0.025<x<0.075$. The $^{69,71}(1/T_1)$ was studied as a function of temperature in a wide temperature range of $2!-!300$ K for the concentrations $x = 0.0,$ $0.5,$ and $1.0$. In the parent semiconducting compound FeGa$_3$, the temperature dependence of the $^{69}(1/T_1)$ exhibits a huge maximum at about $T!sim!6$ K indicating the existence of in-gap states. The opposite binary compound, CoGa$_3$, demonstrates a metallic Korringa behavior with $1/T_1$ $propto T$. In Fe$_{0.5}$Co$_{0.5}$Ga$_3$, the relaxation is strongly enhanced due to spin fluctuations and follows $1/T_1propto T^{1/2}$, which is a unique feature of weakly and nearly antiferromagnetic metals. This itinerant antiferromagnetic behavior contrasts with both magnetization measurements, showing localized magnetism with a relatively low effective moment of about 0.7 $mu_B$/f.u., and ab initio band structure calculations, where a ferromagnetic state with an ordered moment of 0.5 $mu_B$/f.u. is predicted. The results are discussed in terms of the interplay betwen the localized and itinerant magnetizm including in-gap states and spin fluctuations.
The solid solution Cs2-xRbxSnCu3F12 (x = 0, 0.5, 1.0, 1.5) has been investigated crystallographically between 100 and 300 K using synchrotron X-ray powder diffraction and, in the case of x = 0, neutron powder diffraction.
We have performed Raman scattering investigations on the high energy magnetic excitations in a BiFeO$_3$ single crystal as a function of both temperature and laser excitation energy. A strong feature observed at 1250 cm$^{-1}$ in the Raman spectra ha s been previously assigned to two phonon overtone. We show here that its unusual frequency shift with the excitation energy and its asymmetric temperature dependent Fano lineshape reveal a strong coupling to magnetic excitations. In the same energy range, we have also identified the two-magnon excitation with a temperature dependence very similar to $alpha$-Fe$_2$O$_3$ hematite.
The effect of x-rays on an orbital and charge ordered epitaxial film of a Pr$_{0.5}$Ca$_{0.5}$MnO$_{3}$ is presented. As the film is exposed to x-rays, the antiferromagnetic response increases and concomitantly the conductivity of the film improve. T hese results are discussed in terms of a persistent x-ray induced doping, leading to a modification of the magnetic structure. This effect allows writing electronic and magnetic domains in the film and represents a novel way of manipulating magnetism.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا