ترغب بنشر مسار تعليمي؟ اضغط هنا

Percolation on bipartite scale-free networks

172   0   0.0 ( 0 )
 نشر من قبل Bert Van Schaeybroeck
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent studies introduced biased (degree-dependent) edge percolation as a model for failures in real-life systems. In this work, such process is applied to networks consisting of two types of nodes with edges running only between nodes of unlike type. Such bipartite graphs appear in many social networks, for instance in affiliation networks and in sexual contact networks in which both types of nodes show the scale-free characteristic for the degree distribution. During the depreciation process, an edge between nodes with degrees k and q is retained with probability proportional to (kq)^(-alpha), where alpha is positive so that links between hubs are more prone to failure. The removal process is studied analytically by introducing a generating functions theory. We deduce exact self-consistent equations describing the system at a macroscopic level and discuss the percolation transition. Critical exponents are obtained by exploiting the Fortuin-Kasteleyn construction which provides a link between our model and a limit of the Potts model.



قيم البحث

اقرأ أيضاً

Biased (degree-dependent) percolation was recently shown to provide new strategies for turning robust networks fragile and vice versa. Here we present more detailed results for biased edge percolation on scale-free networks. We assume a network in wh ich the probability for an edge between nodes $i$ and $j$ to be retained is proportional to $(k_ik_j)^{-alpha}$ with $k_i$ and $k_j$ the degrees of the nodes. We discuss two methods of network reconstruction, sequential and simultaneous, and investigate their properties by analytical and numerical means. The system is examined away from the percolation transition, where the size of the giant cluster is obtained, and close to the transition, where nonuniversal critical exponents are extracted using the generating functions method. The theory is found to agree quite well with simulations. By introducing an extension of the Fortuin-Kasteleyn construction, we find that biased percolation is well described by the $qto 1$ limit of the $q$-state Potts model with inhomogeneous couplings.
In real networks, the dependency between nodes is ubiquitous; however, the dependency is not always complete and homogeneous. In this paper, we propose a percolation model with weak and heterogeneous dependency; i.e., dependency strengths could be di fferent between different nodes. We find that the heterogeneous dependency strength will make the system more robust, and for various distributions of dependency strengths both continuous and discontinuous percolation transitions can be found. For ErdH{o}s-R{e}nyi networks, we prove that the crossing point of the continuous and discontinuous percolation transitions is dependent on the first five moments of the dependency strength distribution. This indicates that the discontinuous percolation transition on networks with dependency is determined not only by the dependency strength but also by its distribution. Furthermore, in the area of the continuous percolation transition, we also find that the critical point depends on the first and second moments of the dependency strength distribution. To validate the theoretical analysis, cases with two different dependency strengths and Gaussian distribution of dependency strengths are presented as examples.
We show that complex (scale-free) network topologies naturally emerge from hyperbolic metric spaces. Hyperbolic geometry facilitates maximally efficient greedy forwarding in these networks. Greedy forwarding is topology-oblivious. Nevertheless, greed y packets find their destinations with 100% probability following almost optimal shortest paths. This remarkable efficiency sustains even in highly dynamic networks. Our findings suggest that forwarding information through complex networks, such as the Internet, is possible without the overhead of existing routing protocols, and may also find practical applications in overlay networks for tasks such as application-level routing, information sharing, and data distribution.
The nature of level set percolation in the two-dimension Gaussian Free Field has been an elusive question. Using a loop-model mapping, we show that there is a nontrivial percolation transition, and characterize the critical point. In particular, the correlation length diverges exponentially, and the critical clusters are logarithmic fractals, whose area scales with the linear size as $A sim L^2 / sqrt{ln L}$. The two-point connectivity also decays as the log of the distance. We corroborate our theory by numerical simulations. Possible CFT interpretations are discussed.
We present some exact results on bond percolation. We derive a relation that specifies the consequences for bond percolation quantities of replacing each bond of a lattice $Lambda$ by $ell$ bonds connecting the same adjacent vertices, thereby yieldin g the lattice $Lambda_ell$. This relation is used to calculate the bond percolation threshold on $Lambda_ell$. We show that this bond inflation leaves the universality class of the percolation transition invariant on a lattice of dimensionality $d ge 2$ but changes it on a one-dimensional lattice and quasi-one-dimensional infinite-length strips. We also present analytic expressions for the average cluster number per vertex and correlation length for the bond percolation problem on the $N to infty$ limits of several families of $N$-vertex graphs. Finally, we explore the effect of bond vacancies on families of graphs with the property of bounded diameter as $N to infty$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا