ترغب بنشر مسار تعليمي؟ اضغط هنا

Josephson effect in SIFS-tunnel junctions with domain walls in weak link region

77   0   0.0 ( 0 )
 نشر من قبل Igor Soloviev I
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study theoretically the properties of SIFS type Josephson junctions composed of two superconducting (S) electrodes separated by an insulating layer (I) and a ferromagnetic (F) film consisting of periodic magnetic domains structure with antiparallel magnetization directions in neighboring domains. The two-dimensional problem in the weak link area is solved analytically in the framework of the linearized quasiclassical Usadel equations. Based on this solution, the spatial distributions of the critical current density, $J_{C},$ in the domains and critical current, $I_{C},$ of SIFS structures are calculated as a function of domain wall parameters, as well as the thickness, $d_{F},$ and the width, $W,$ of the domains. We demonstrate that $I_{C}(d_{F},W)$ dependencies exhibit damped oscillations with the ratio of the decay length, $xi_{1},$ and oscillation period, $xi_{2},$ being a function of the parameters of the domains, and this ratio may take any value from zero to unity. Thus, we propose a new physical mechanism that may explain the essential difference between $xi_{1}$ and $xi_{2}$ observed experimentally in various types of SFS Josephson junctions.

قيم البحث

اقرأ أيضاً

We investigate superconductor/insulator/ferromagnet/superconductor (SIFS) tunnel Josephson junctions in the dirty limit, using the quasiclassical theory. We consider the case of a strong tunnel barrier such that the left S layer and the right FS bila yer are decoupled. We calculate quantitatively the density of states (DOS) in the FS bilayer for arbitrary length of the ferromagnetic layer, using a self-consistent numerical method. We compare these results with a known analytical DOS approximation, which is valid when the ferromagnetic layer is long enough. Finally we calculate quantitatively the current-voltage characteristics of a SIFS junction.
The dependence of the critical current density j_c on the ferromagnetic interlayer thickness d_F was determined for Nb/Al_2O_3/Cu/Ni/Nb Josephson tunnel junctions with ferromagnetic Ni interlayer from very thin film thicknesses (sim 1 nm) upwards and classified into F-layer thickness regimes showing a dead magnetic layer, exchange, exchange + anisotropy and total suppression of j_c. The Josephson coupling changes from 0 to pi as function of d_F, and -very close to the crossover thickness- as function of temperature. The strong suppression of the supercurrent in comparison to non-magnetic Nb/Al_2O_3/Cu/Nb junctions indicated that the insertion of a F-layer leads to additional interface scattering. The transport inside the dead magnetic layer was in dirty limit. For the magnetically active regime fitting with both the clean and the dirty limit theory were carried out, indicating dirty limit condition, too. The results were discussed in the framework of literature
We present the latest generation of superconductor-insulator-ferromagnet-superconductor Josephson tunnel junctions with a step-like thickness of the ferromagnetic (F) layer. The F-layer thicknesses $d_1$ and $d_2$ in both halves were varied to obtain different combinations of positive and negative critical current densities $j_{c,1}$ and $j_{c,2}$. The measured dependences of the critical current on applied magnetic field can be well described by a model which takes into account different critical current densities (obtained from reference junctions) and different net magnetization of the multidomain ferromagnetic layer in both halves.
We fabricated high quality Nb/Al_2O_3/Ni_{0.6}Cu_{0.4}/Nb superconductor-insulator-ferromagnet-superconductor Josephson tunnel junctions. Using a ferromagnetic layer with a step-like thickness, we obtain a 0-pi junction, with equal lengths and critic al currents of 0 and pi parts. The ground state of our 330 microns (1.3 lambda_J) long junction corresponds to a spontaneous vortex of supercurrent pinned at the 0-pi step and carrying ~6.7% of the magnetic flux quantum Phi_0. The dependence of the critical current on the applied magnetic field shows a clear minimum in the vicinity of zero field.
Josephson junctions based on three-dimensional topological insulators offer intriguing possibilities to realize unconventional $p$-wave pairing and Majorana modes. Here, we provide a detailed study of the effect of a uniform magnetization in the norm al region: We show how the interplay between the spin-momentum locking of the topological insulator and an in-plane magnetization parallel to the direction of phase bias leads to an asymmetry of the Andreev spectrum with respect to transverse momenta. If sufficiently large, this asymmetry induces a transition from a regime of gapless, counterpropagating Majorana modes to a regime with unprotected modes that are unidirectional at small transverse momenta. Intriguingly, the magnetization-induced asymmetry of the Andreev spectrum also gives rise to a Josephson Hall effect, that is, the appearance of a transverse Josephson current. The amplitude and current phase relation of the Josephson Hall current are studied in detail. In particular, we show how magnetic control and gating of the normal region can enable sizable Josephson Hall currents compared to the longitudinal Josephson current. Finally, we also propose in-plane magnetic fields as an alternative to the magnetization in the normal region and discuss how the planar Josephson Hall effect could be observed in experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا