ﻻ يوجد ملخص باللغة العربية
The two-dimensional ferromagnetic anisotropic Ashkin-Teller model is investigated through a real-space renormalization-group approach. The critical frontier, separating five distinct phases, recover all the known exacts results for the square lattice. The correlation length $( u_T)$ and crossover $(phi)$ critical exponents are also calculated. With the only exception of the four-state Potts critical point, the entire phase diagram belongs to the Ising universality class.
We have investigated the three-color Ashkin-Teller model (3AT), on the Wheatstone bridge hierarchical lattice, by means of a Migdal-Kadanoff renormalization group approach. We have obtained the exact recursion relations for the renormalized couplings
The universal critical point ratio $Q$ is exploited to determine positions of the critical Ising transition lines on the phase diagram of the Ashkin-Teller (AT) model on the square lattice. A leading-order expansion of the ratio $Q$ in the presence o
We use a simple real-space renormalization group approach to investigate the critical behavior of the quantum Ashkin-Teller model, a one-dimensional quantum spin chain possessing a line of criticality along which critical exponents vary continuously.
We consider two critical semi-infinite subsystems with different critical exponents and couple them through their surfaces. The critical behavior at the interface, influenced by the critical fluctuations of the two subsystems, can be quite rich. In o
Six-loop massive scheme renormalization group functions of a d=3-dimensional cubic model (J.M. Carmona, A. Pelissetto, and E. Vicari, Phys. Rev. B vol. 61, 15136 (2000)) are reconsidered by means of the pseudo-epsilon expansion. The marginal order pa