ﻻ يوجد ملخص باللغة العربية
We investigate the quantum fluctuation effects in the vicinity of the critical point of a $p$-orbital bosonic system in a square optical lattice using Wilsonian renormalization group, where the $p$-orbital bosons condense at nonzero momenta and display rich phases including both time-reversal symmetry invariant and broken BEC states. The one-loop renormalization group analysis generates corrections to the mean-field phase boundaries. We also show the quantum fluctuations in the $p$-orbital system tend to induce the ordered phase but not destroy it via the the Coleman-Weinberg mechanism, which is qualitative different from the ordinary quantum fluctuation corrections to the mean-field phase boundaries in $s$-orbital systems. Finally we discuss the observation of these phenomena in the realistic experiment.
We investigate $p$-orbital Bose-Einstein condensates in both the square and checkerboard lattice by numerically solving the Gross-Pitaevskii equation. The periodic potential for the latter lattice is taken exactly from the recent experiment [Nature P
We present a detailed functional renormalization group analysis of spin-1/2 dipolar Heisenberg model on square lattice. This model is similar to the well known $J_1$-$J_2$ model and describes the pseudospin degrees of freedom of polar molecules confi
The realization of artificial gauge fields and spin-orbit coupling for ultra-cold quantum gases promises new insight into paradigm solid state systems. Here we experimentally probe the dispersion relation of a spin-orbit coupled Bose-Einstein condens
We discuss the method for the measurement of the gravity acceleration g by means of Bloch oscillations of an accelerated BEC in an optical lattice. This method has a theoretical critical point due to the fact that the period of the Bloch oscillations
We study experimentally the stability of excited, interacting states of bosons in a double-well optical lattice in regimes where the nonlinear interactions are expected to induce swallowtail looped band structure. By carefully preparing different ini