ﻻ يوجد ملخص باللغة العربية
We consider systems confined to a $d$-dimensional slab of macroscopic lateral extension and finite thickness $L$ that undergo a continuous bulk phase transition in the limit $Ltoinfty$ and are describable by an O(n) symmetrical Hamiltonian. Periodic boundary conditions are applied across the slab. We study the effects of long-range pair interactions whose potential decays as $b x^{-(d+sigma)}$ as $xtoinfty$, with $2<sigma<4$ and $2<d+sigmaleq 6$, on the Casimir effect at and near the bulk critical temperature $T_{c,infty}$, for $2<d<4$. For the scaled reduced Casimir force per unit cross-sectional area, we obtain the form $L^{d} {mathcal F}_C/k_BT approx Xi_0(L/xi_infty) + g_omega L^{-omega}Xiomega(L/xi_infty) + g_sigma L^{-omega_sigm a} Xi_sigma(L xi_infty)$. The contribution $propto g_sigma$ decays for $T eq T_{c,infty}$ algebraically in $L$ rather than exponentially, and hence becomes dominant in an appropriate regime of temperatures and $L$. We derive exact results for spherical and Gaussian models which confirm these findings. In the case $d+sigma =6$, which includes that of nonretarded van-der-Waals interactions in $d=3$ dimensions, the power laws of the corrections to scaling $propto b$ of the spherical model are found to get modified by logarithms. Using general RG ideas, we show that these logarithmic singularities originate from the degeneracy $omega=omega_sigma=4-d$ that occurs for the spherical model when $d+sigma=6$, in conjunction with the $b$ dependence of $g_omega$.
A version of the Greens functions theory of the Van der Waals forces which can be conveniently used in the presence of spatial dispersion is presented. The theory is based on the fluctuation-dissipation theorem and is valid for interacting bodies, se
We present exact results on the behavior of the thermodynamic Casimir force and the excess free energy in the framework of the $d$-dimensional spherical model with a power law long-range interaction decaying at large distances $r$ as $r^{-d-sigma}$,
We consider near-critical two-dimensional statistical systems at phase coexistence on the half plane with boundary conditions leading to the formation of a droplet separating coexisting phases. General low-energy properties of two-dimensional field t
We present results of a Monte Carlo study for the ferromagnetic Ising model with long range interactions in two dimensions. This model has been simulated for a large range of interaction parameter $sigma$ and for large sizes. We observe that the resu
We present an approach for computing long-range van der Waals (vdW) interactions between complex molecular systems and arbitrarily shaped macroscopic bodies, melding atomistic treatments of electronic fluctuations based on density functional theory i