ﻻ يوجد ملخص باللغة العربية
A version of the Greens functions theory of the Van der Waals forces which can be conveniently used in the presence of spatial dispersion is presented. The theory is based on the fluctuation-dissipation theorem and is valid for interacting bodies, separated by vacuum. Objections against theories acounting for the spatial dispersion are discussed.
We present an approach for modeling nanoscale wetting and dewetting of liquid surfaces that exploits recently developed, sophisticated techniques for computing van der Waals (vdW) or (more generally) Casimir forces in arbitrary geometries. We solve t
In inhomogeneous dielectric media the divergence of the electromagnetic stress is related to the gradients of varepsilon and mu, which is a consequence of Maxwells equations. Investigating spherically symmetric media we show that this seemingly unive
The exfoliation of two naturally occurring van der Waals minerals, graphite and molybdenite, arouse an unprecedented level of interest by the scientific community and shaped a whole new field of research: 2D materials research. Several years later, t
Magnetic skyrmions in 2D chiral magnets are in general stabilized by a combination of Dzyaloshinskii-Moriya interaction and external magnetic field. Here, we show that skyrmions can also be stabilized in twisted moire superlattices in the absence of
We have synthesized unique colloidal nanoplatelets of the ferromagnetic two-dimensional (2D) van der Waals material CrI3 and have characterized these nanoplatelets structurally, magnetically, and by magnetic circular dichroism spectroscopy. The isola