ﻻ يوجد ملخص باللغة العربية
We present exact results on the behavior of the thermodynamic Casimir force and the excess free energy in the framework of the $d$-dimensional spherical model with a power law long-range interaction decaying at large distances $r$ as $r^{-d-sigma}$, where $sigma<d<2sigma$ and $0<sigmaleq2$. For a film geometry and under periodic boundary conditions we consider the behavior of these quantities near the bulk critical temperature $T_c$, as well as for $T>T_c$ and $T<T_c$. The universal finite-size scaling function governing the behavior of the force in the critical region is derived and its asymptotics are investigated. While in the critical and under critical region the force is of the order of $L^{-d}$, for $T>T_c$ it decays as $L^{-d-sigma}$, where $L$ is the thickness of the film. We consider both the case of a finite system that has no phase transition of its own, when $d-1<sigma$, as well as the case with $d-1>sigma$, when one observes a dimensional crossover from $d$ to a $d-1$ dimensional critical behavior. The behavior of the force along the phase coexistence line for a magnetic field H=0 and $T<T_c$ is also derived. We have proven analytically that the excess free energy is always negative and monotonically increasing function of $T$ and $H$. For the Casimir force we have demonstrated that for any $sigma ge 1$ it is everywhere negative, i.e. an attraction between the surfaces bounding the system is to be observed. At $T=T_c$ the force is an increasing function of $T$ for $sigma>1$ and a decreasing one for $sigma<1$. For any $d$ and $sigma$ the minimum of the force at $T=T_c$ is always achieved at some $H e 0$.
We consider systems confined to a $d$-dimensional slab of macroscopic lateral extension and finite thickness $L$ that undergo a continuous bulk phase transition in the limit $Ltoinfty$ and are describable by an O(n) symmetrical Hamiltonian. Periodic
Monte Carlo simulations based on an integration scheme for free energy differences is used to compute critical Casimir forces for three-dimensional Ising films with various boundary fields. We study the scaling behavior of the critical Casimir force,
We present a new Monte Carlo method to calculate Casimir forces acting on objects in a near-critical fluid, considering the two basic cases of a wall and a sphere embedded in a two-dimensional Ising medium. During the simulation, the objects are move
The confinement of critical fluctuations in soft media induces critical Casimir forces acting on the confining surfaces. The temperature and geometry dependences of such forces are characterized by universal scaling functions. A novel approach is pre
Using general scaling arguments combined with mean-field theory we investigate the critical ($T simeq T_c$) and off-critical ($T e T_c$) behavior of the Casimir forces in fluid films of thickness $L$ governed by dispersion forces and exposed to long-