ﻻ يوجد ملخص باللغة العربية
In discussing the phase transition of the three-dimensional complex |psi|^4 theory, we study the geometrically defined vortex-loop network as well as the magnetic properties of the system in the vicinity of the critical point. Using high-precision Monte Carlo techniques we investigate if both of them exhibit the same critical behavior leading to the same critical exponents and hence to a consistent description of the phase transition. Different percolation observables are taken into account and compared with each other. We find that different connectivity definitions for constructing the vortex-loop network lead to different results in the thermodynamic limit, and the percolation thresholds do not coincide with the thermodynamic phase transition point.
We study the phase transition of the three-dimensional complex |psi|^4 theory by considering the geometrically defined vortex-loop network as well as the magnetic properties of the system in the vicinity of the critical point. Using high-precision Mo
We present a detailed study of the equilibrium properties and stochastic dynamic evolution of the U(1)-invariant relativistic complex field theory in three dimensions. This model has been used to describe, in various limits, properties of relativisti
A percolation transition in the vortex state of a superconducting 2H-NbSe2 crystal is observed in the regime where vortices form a heterogeneous phase consisting of ordered and disordered domains. The transition is signaled by a sharp increase in cri
We study the vortex-line lattice and liquid phases of a clean type-II superconductor by means of Monte Carlo simulations of the lattice London model. Motivated by a recent controversy regarding the presence, within this model, of a vortex-liquid regi
Interplay between antiferromagnetism and superconductivity is studied by using the 3-dimensional nearly half-filled Hubbard model with anisotropic transfer matrices $t_{rm z}$ and $t_{perp}$. The phase diagrams are calculated for varying values of th