ﻻ يوجد ملخص باللغة العربية
We study the phase transition of the three-dimensional complex |psi|^4 theory by considering the geometrically defined vortex-loop network as well as the magnetic properties of the system in the vicinity of the critical point. Using high-precision Monte Carlo techniques we examine an alternative formulation of the geometrical excitations in relation to the global O(2)-symmetry breaking, and check if both of them exhibit the same critical behavior leading to the same critical exponents and therefore to a consistent description of the phase transition. Different percolation observables are taken into account and compared with each other. We find that different definitions of constructing the vortex-loop network lead to different results in the thermodynamic limit, and the percolation thresholds do not coincide with the thermodynamic phase transition point.
In discussing the phase transition of the three-dimensional complex |psi|^4 theory, we study the geometrically defined vortex-loop network as well as the magnetic properties of the system in the vicinity of the critical point. Using high-precision Mo
We study the critical behaviour of the three-dimensional U(1) gauge+Higgs theory (Ginzburg-Landau model) at large scalar self-coupling lambda (``type II region) by measuring various correlation lengths as well as the Abrikosov-Nielsen-Olesen vortex t
It is believed that the two-dimensional massless $mathcal{N}=2$ Wess--Zumino model becomes the $mathcal{N}=2$ superconformal field theory (SCFT) in the infrared (IR) limit. We examine this theoretical conjecture of the Landau--Ginzburg (LG) descripti
For each given $ngeq 2$, we construct a family of entire solutions $u_varepsilon (z,t)$, $varepsilon>0$, with helical symmetry to the 3-dimensional complex-valued Ginzburg-Landau equation begin{equation*} onumber Delta u+(1-|u|^2)u=0, quad (z,t) in m
After a brief introduction to the complex Ginzburg-Landau equation, some of its important features in two space dimensions are reviewed. A comprehensive study of the various phases observed numerically in large systems over the whole parameter space