ترغب بنشر مسار تعليمي؟ اضغط هنا

Quench dynamics of the three-dimensional U(1) complex field theory: geometric and scaling characterisation of the vortex tangle

57   0   0.0 ( 0 )
 نشر من قبل Leticia Cugliandolo
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a detailed study of the equilibrium properties and stochastic dynamic evolution of the U(1)-invariant relativistic complex field theory in three dimensions. This model has been used to describe, in various limits, properties of relativistic bosons at finite chemical potential, type II su- perconductors, magnetic materials and aspects of cosmology. We characterise the thermodynamic second-order phase transition in different ways. We study the equilibrium vortex configurations and their statistical and geometrical properties in equilibrium at all temperatures. We show that at very high temperature the statistics of the filaments is the one of fully-packed loop models. We identify the temperature, within the ordered phase, at which the number density of vortex lengths falls-off algebraically and we associate it to a geometric percolation transition that we characterise in various ways. We measure the fractal properties of the vortex tangle at this threshold. Next, we perform infinite rate quenches from equilibrium in the disordered phase, across the thermo- dynamic critical point, and deep into the ordered phase. We show that three time regimes can be distinguished: a first approach towards a state that, within numerical accuracy, shares many features with the one at the percolation threshold, a later coarsening process that does not alter, at sufficiently low temperature, the fractal properties of the long vortex loops, and a final approach to equilibrium. These features are independent of the reconnection rule used to build the vortex lines. In each of these regimes we identify the various length-scales of the vortices in the system. We also study the scaling properties of the ordering process and the progressive annihilation of topological defects and we prove that the time-dependence of the time-evolving vortex tangle can be described within the dynamic scaling framework.



قيم البحث

اقرأ أيضاً

Magneto-transport of hard core bosons (HCB) is studied using an XXZ quantum spin model representation, appropriately gauged on the torus to allow for an external magnetic field. We find strong lattice effects near half filling. An effective quantum m echanical description of the vortex degrees of freedom is derived. Using semiclassical and numerical analysis we compute the vortex hopping energy, which at half filling is close to magnitude of the boson hopping energy. The critical quantum melting density of the vortex lattice is estimated at 6.5x10-5 vortices per unit cell. The Hall conductance is computed from the Chern numbers of the low energy eigenstates. At zero temperature, it reverses sign abruptly at half filling. At precisely half filling, all eigenstates are doubly degenerate for any odd number of flux quanta. We prove the exact degeneracies on the torus by constructing an SU(2) algebra of point-group symmetries, associated with the center of vorticity. This result is interpreted as if each vortex carries an internal spin-half degree of freedom (vspin), which can manifest itself as a charge density modulation in its core. Our findings suggest interesting experimental implications for vortex motion of cold atoms in optical lattices, and magnet-transport of short coherence length superconductors.
The complex scaling method, which consists in continuing spatial coordinates into the complex plane, is a well-established method that allows to compute resonant eigenfunctions of the time-independent Schroedinger operator. Whenever it is desirable t o apply the complex scaling to investigate resonances in physical systems defined on numerical discrete grids, the most direct approach relies on the application of a similarity transformation to the original, unscaled Hamiltonian. We show that such an approach can be conveniently implemented in the Daubechies wavelet basis set, featuring a very promising level of generality, high accuracy, and no need for artificial convergence parameters. Complex scaling of three dimensional numerical potentials can be efficiently and accurately performed. By carrying out an illustrative resonant state computation in the case of a one-dimensional model potential, we then show that our wavelet-based approach may disclose new exciting opportunities in the field of computational non-Hermitian quantum mechanics.
In discussing the phase transition of the three-dimensional complex |psi|^4 theory, we study the geometrically defined vortex-loop network as well as the magnetic properties of the system in the vicinity of the critical point. Using high-precision Mo nte Carlo techniques we investigate if both of them exhibit the same critical behavior leading to the same critical exponents and hence to a consistent description of the phase transition. Different percolation observables are taken into account and compared with each other. We find that different connectivity definitions for constructing the vortex-loop network lead to different results in the thermodynamic limit, and the percolation thresholds do not coincide with the thermodynamic phase transition point.
We present a worm-type Monte Carlo study of several typical models in the three-dimensional (3D) U(1) universality class, which include the classical 3D XY model in the directed flow representation and its Villain version, as well as the 2D quantum B ose-Hubbard (BH) model with unitary filling in the imaginary-time world-line representation. From the topology of the configurations on a torus, we sample the superfluid stiffness $rho_s$ and the dimensionless wrapping probability $R$. From the finite-size scaling analyses of $rho_s$ and of $R$, we determine the critical points as $T_c ({rm XY}) =2.201, 844 ,1(5)$ and $T_c ({rm Villain})=0.333, 067, 04(7)$ and $(t/U)_c ({rm BH})=0.059 , 729 ,1(8)$, where $T$ is the temperature for the classical models, and $t$ and $U$ are respectively the hopping and on-site interaction strength for the BH model. The precision of our estimates improves significantly over that of the existing results. Moreover, it is observed that at criticality, the derivative of a wrapping probability with respect to $T$ suffers from negligible leading corrections and enables a precise determination of the correlation length critical exponent as $ u=0.671 , 83(18)$. In addition, the critical exponent $eta$ is estimated as $eta=0.038 , 53(48)$ by analyzing a susceptibility-like quantity. We believe that these numerical results would provide a solid reference in the study of classical and quantum phase transitions in the 3D U(1) universality, including the recent development of the conformal bootstrap method.
We study the quench dynamics of a topological $p$-wave superfluid with two competing order parameters, $Delta_pm(t)$. When the system is prepared in the $p+ip$ ground state and the interaction strength is quenched, only $Delta_+(t)$ is nonzero. Howev er, we show that fluctuations in the initial conditions result in the growth of $Delta_-(t)$ and chaotic oscillations of both order parameters. We term this behavior phase III. In addition, there are two other types of late time dynamics -- phase I where both order parameters decay to zero and phase II where $Delta_+(t)$ asymptotes to a nonzero constant while $Delta_-(t)$ oscillates near zero. Although the model is nonintegrable, we are able to map out the exact phase boundaries in parameter space. Interestingly, we find phase III is unstable with respect to breaking the time reversal symmetry of the interaction. When one of the order parameters is favored in the Hamiltonian, the other one rapidly vanishes and the previously chaotic phase III is replaced by the Floquet topological phase III that is seen in the integrable chiral $p$-wave model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا