ﻻ يوجد ملخص باللغة العربية
Although the precise mechanism of high-Tc superconductivity in the layered cuprates remains unknown, it is generally thought that strong 2D Heisenberg antiferromagnetism combined with disruptive hole doping is an essential aspect of the phenomenon. Intensive studies of other layered 3d transition metal systems have greatly extended our understanding of strongly correlated electron states, but to date have failed to show strong 2D antiferromagnetism or high-Tc superconductivity. For this reason the largely unexplored 4d^9 Ag^II fluorides, which are structurally and perhaps magnetically similar to the 3d^9 Cu^II cuprates, merit close study. Here we present a comprehensive study of magnetism in the layered Ag^II fluoride Cs_2AgF_4, using magnetic susceptometry, neutron diffraction and inelastic neutron scattering techniques. We find that this material is well described as a 2D Heisenberg ferromagnet, in sharp contrast to the high-Tc cuprates. The exchange constant J is the largest known for any material of this type. We suggest that orbital ordering may be the origin of the ferromagnetism we observe in this material.
We calculate the expected finite frequency neutron scattering intensity based on the two-sublattice collinear antiferromagnet found by recent neutron scattering experiments as well as by theoretical analysis on the iron oxypnictide LaOFeAs. We consid
Two-dimensional (2D) Van Hove singularities (VHSs) associated with the saddle points or extrema of the energy dispersion usually show logarithmic divergences in the density of states (DOS). However, recent studies find that the VHSs originating from
Relationship between the superconducting gap and the pseudogap has been the subject of controversies. In order to clarify this issue, we have studied the superconducting gap and pseudogap of the high-Tc superconductor La2-xSrxCuO4 (x=0.10, 0.14) by a
We present the results of a muon-spin relaxation study of the high-Tc analogue material Cs2AgF4. We find unambiguous evidence for magnetic order, intrinsic to the material, below T_C=13.95(3) K. The ratio of inter- to intraplane coupling is estimated
Recently, angle-resolved photoemission spectroscopy (ARPES) has been used to highlight an anomalously large band renormalization at high binding energies in cuprate superconductors: the high energy waterfall or high energy anomaly (HEA). This paper d