ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of strong correlations on the high energy anomaly in hole- and electron-doped high-Tc superconductors

330   0   0.0 ( 0 )
 نشر من قبل Brian Moritz
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, angle-resolved photoemission spectroscopy (ARPES) has been used to highlight an anomalously large band renormalization at high binding energies in cuprate superconductors: the high energy waterfall or high energy anomaly (HEA). This paper demonstrates, using a combination of new ARPES measurements and quantum Monte Carlo simulations, that the HEA is not simply the by-product of matrix element effects, but rather represents a cross-over from a quasiparticle band at low binding energies near the Fermi level to valence bands at higher binding energy, assumed to be of strong oxygen character, in both hole- and electron-doped cuprates. While photoemission matrix elements clearly play a role in changing the aesthetic appearance of the band dispersion, i.e. the waterfall-like behavior, they provide an inadequate description for the physics that underlies the strong band renormalization giving rise to the HEA. Model calculations of the single-band Hubbard Hamiltonian showcase the role played by correlations in the formation of the HEA and uncover significant differences in the HEA energy scale for hole- and electron-doped cuprates. In addition, this approach properly captures the transfer of spectral weight accompanying both hole and electron doping in a correlated material and provides a unifying description of the HEA across both sides of the cuprate phase diagram.

قيم البحث

اقرأ أيضاً

We study the doping evolution of the electronic structure in the pseudogap state of high-Tc cuprate superconductors, by means of a cluster extension of the dynamical mean-field theory applied to the two-dimensional Hubbard model. The calculated singl e-particle excitation spectra in the strongly underdoped regime show a marked electron-hole asymmetry and reveal a s-wave pseudogap, which display a finite amplitude in all the directions in the momentum space but not always at the Fermi level: The energy location of the gap strongly depends on momentum, and in particular in the nodal region, it is above the Fermi level. With increasing hole doping, the pseudogap disappears everywhere in the momentum space. We show that the origin and the s-wave structure of the pseudogap can be ascribed to the emergence of a strong-scattering surface, which appears in the energy-momentum space close to the Mott insulator.
Pseudogap regime for the prototype high-Tc compounds hole doped Bi2Sr2CaCu2O8-x (Bi2212) and electron doped Nd2-xCexCuO4 (NCCO) is described by means of novel generalized LDA+DMFT+Sk approach. Here conventional dynamical mean-field theory (DMFT) equa tions are supplied with additional (momentum dependent) self-energy Sk. In the present case Sk describes non-local dynamical correlations induced by short-ranged collective Heisenberg-like antiferromagnetic spin fluctuations. Material specific model parameters of two neighboring CuO2 layers of Bi2212 and single CuO2 layer of NCCO were obtained within local density approximation (LDA) and constrained LDA method. We show that Fermi surface in presence of the pseudogap fluctuations have perfectly visible hot-spots for NCCO while in Bi2212 there is just rather broad region with strong antiferromagnetic scattering. Results obtained are in good agreement with recent ARPES and optical experiments.
Undoped iron superconductors accommodate $n=6$ electrons in five d-orbitals. Experimental and theoretical evidence shows that the strength of correlations increases with hole-doping, as the electronic filling approaches half-filling with $n=5$ electr ons. This evidence delineates a scenario in which the parent compound of iron superconductors is the half-filled system, in analogy to cuprate superconductors. In cuprates the superconductivity can be induced upon electron or hole doping. In this work we propose to search for high-Tc superconductivity and strong correlations in chromium pnictides and chalcogenides with $n<5$ electrons. By means of ab-initio, slave spin and multi-orbital RPA calculations we analyse the strength of the correlations and the superconducting and magnetic instabilities in these systems with main focus on LaCrAsO. We find that electron-doped LaCrAsO is a strongly correlated system with competing magnetic interactions, being $(pi,pi)$ antiferromagnetism and nodal d-wave pairing the most plausible magnetic and superconducting instabilities, respectively.
97 - B. Kyung , J.S. Landry , 2002
We show that, at weak to intermediate coupling, antiferromagnetic fluctuations enhance d-wave pairing correlations until, as one moves closer to half-filling, the antiferromagnetically-induced pseudogap begins to suppress the tendency to superconduct ivity. The accuracy of our approach is gauged by detailed comparisons with Quantum Monte Carlo simulations. The negative pressure dependence of Tc and the existence of photoemission hot spots in electron-doped cuprate superconductors find their natural explanation within this approach.
Two-dimensional (2D) Van Hove singularities (VHSs) associated with the saddle points or extrema of the energy dispersion usually show logarithmic divergences in the density of states (DOS). However, recent studies find that the VHSs originating from higher-order saddle-points have faster-than-logarithmic divergences, which can amplify electron correlation effects and create exotic states such as supermetals in 2D materials. Here we report the existence of high-order VHSs in the cuprates and related high-Tc superconductors and show that the anomalous divergences in their spectra are driven by the electronic dimensionality of the system being lower than the dimensionality of the lattice. The order of VHS is found to correlate with the superconducting Tc such that materials with higher order VHSs display higher Tcs. We further show that the presence of the normal and higher-order VHSs in the electronic spectrum can provide a straightforward marker for identifying the propensity of a material toward correlated phases such as excitonic insulators or supermetals. Our study opens up a new materials playground for exploring the interplay between high-order VHSs, superconducting transition temperatures and electron correlation effects in the cuprates and related high-Tc superconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا