ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence of Water-related Discrete Trap State Formation in Pentacene Single Crystal Field-Effect Transistors

139   0   0.0 ( 0 )
 نشر من قبل Claudia Goldmann
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the generation of a discrete trap state during negative gate bias stress in pentacene single crystal flip-crystal field-effect transistors with a SiO2 gate dielectric. Trap densities of up to 2*10^12 cm^-2 were created in the experiments. Trap formation and trap relaxation are distinctly different above and below ~280 K. In devices in which a self-assembled monolayer on top of the SiO2 provides a hydrophobic insulator surface we do not observe trap formation. These results indicate the microscopic cause of the trap state to be water adsorbed on the SiO2 surface.

قيم البحث

اقرأ أيضاً

Funtionalized pentacene, 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene), field-effect transistors(FETs) were made by thermal evaporation or solution deposition method and the mobility was measured as a function of temperature and light power. The field-effect mobility ($mu$$_{rm FET}$) has a gate-voltage dependent activation energy. A non-monotonic temperature dependence was observed at high gate voltage (V$_G$ $<$ -30 V) with activation energy E$_a$ $sim$ 60 - 170 meV,depending on the fabrication procedure. The gate-voltage dependent mobility and non-monotonic temperature dependence indicates that shallow traps play important role in the transport of TIPS-pentacene films. The current in the saturation regime as well as mobility increase upon light illumination and is proportional to the light intensity, mainly due to the photoconductive response. Transistors with submicron channel length showed unsaturating current-voltage characteristics due to the short channel effect. Realization of simple circuits such as NOT(inverter), NOR, and NAND logic gates are demonstrated for thin film TIPS-pentacene transistors.
149 - A.P. Micolich , L.L. Bell , 2007
In this paper we present an improved process for producing elastomer transistor stamps and high-mobility organic field-effect transistors (FETs) based on semiconducting acene molecular crystals. In particular, we have removed the need to use a silani zed Si wafer for curing the stamps and to handle a fragile micron-thickness polydimethylsiloxane (PDMS) insulating film and laminate it, bubble free, against the PDMS transistor stamp. We find that despite the altered design, rougher PDMS surface, and lamination and measurement of the device in air, we still achieve electrical mobilities of order 10 cm^2/Vs, comparable to the current state of the art in organic FETs. Our device shows hole conduction with a threshold voltage of order -9V, which corresponds to a trap density of 1.4 x 10^10 cm^-2.
Pentacenequinone (PnQ) impurities have been introduced into a pentacene source material at number densities from 0.001 to 0.474 to quantify the relative effects of impurity content and grain boundary structure on transport in pentacene thin-film tran sistors. Atomic force microscopy (AFM) and electrical measurements of top-contact pentacene thin-film transistors have been employed to directly correlate initial structure and final film structures, with the device mobility as a function of added impurity content. The results reveal a factor four decrease in mobility without significant changes in film morphology for source PnQ number fractions below ~0.008. For these low concentrations, the impurity thus directly influences transport, either as homogeneously distributed defects or by concentration at the otherwise-unchanged grain boundaries. For larger impurity concentrations, the continuing strong decrease in mobility is correlated with decreasing grain size, indicating an impurity-induced increase in the nucleation of grains during early stages of film growth.
264 - Ik-Sun Hong , Kyung-Jin Lee 2019
Magnetic skyrmions are of considerable interest for low-power memory and logic devices because of high speed at low current and high stability due to topological protection. We propose a skyrmion field-effect transistor based on a gate-controlled Dzy aloshinskii-Moriya interaction. A key working principle of the proposed skyrmion field-effect transistor is a large transverse motion of skyrmion, caused by an effective equilibrium damping-like spin-orbit torque due to spatially inhomogeneous Dzyaloshinskii-Moriya interaction. This large transverse motion can be categorized as the skyrmion Hall effect, but has been unrecognized previously. The propose device is capable of multi-bit operation and Boolean functions, and thus is expected to serve as a low-power logic device based on the magnetic solitons.
The advent of black phosphorus field-effect transistors (FETs) has brought new possibilities in the study of two-dimensional (2D) electron systems. In a black phosphorus FET, the gate induces highly anisotropic 2D electron and hole gases. Although th e 2D hole gas in black phosphorus has reached high carrier mobilities that led to the observation of the integer quantum Hall effect, the improvement in the sample quality of the 2D electron gas (2DEG) has however been only moderate; quantum Hall effect remained elusive. Here, we obtain high quality black phosphorus 2DEG by defining the 2DEG region with a prepatterned graphite local gate. The graphite local gate screens the impurity potential in the 2DEG. More importantly, it electrostatically defines the edge of the 2DEG, which facilitates the formation of well-defined edge channels in the quantum Hall regime. The improvements enable us to observe precisely quantized Hall plateaus in electron-doped black phosphorus FET. Magneto-transport measurements under high magnetic fields further revealed a large effective mass and an enhanced Lande g-factor, which points to strong electron-electron interaction in black phosphorus 2DEG. Such strong interaction may lead to exotic many-body quantum states in the fractional quantum Hall regime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا