ﻻ يوجد ملخص باللغة العربية
In this paper we present an improved process for producing elastomer transistor stamps and high-mobility organic field-effect transistors (FETs) based on semiconducting acene molecular crystals. In particular, we have removed the need to use a silanized Si wafer for curing the stamps and to handle a fragile micron-thickness polydimethylsiloxane (PDMS) insulating film and laminate it, bubble free, against the PDMS transistor stamp. We find that despite the altered design, rougher PDMS surface, and lamination and measurement of the device in air, we still achieve electrical mobilities of order 10 cm^2/Vs, comparable to the current state of the art in organic FETs. Our device shows hole conduction with a threshold voltage of order -9V, which corresponds to a trap density of 1.4 x 10^10 cm^-2.
We demonstrate dual-gated $p$-type field-effect transistors (FETs) based on few-layer tungsten diselenide (WSe$_2$) using high work-function platinum source/drain contacts, and a hexagonal boron nitride top-gate dielectric. A device topology with con
We report the fabrication of ionic liquid (IL) gated field-effect transistors (FETs) consisting of bilayer and few-layer MoS2. Our transport measurements indicate that the electron mobility about 60 cm2V-1s-1 at 250 K in ionic liquid gated devices ex
Two-dimensional atomic crystals are extensively studied in recent years due to their exciting physics and device applications. However, a molecular counterpart, with scalable processability and competitive device performance, is still challenging. He
We report on the generation of a discrete trap state during negative gate bias stress in pentacene single crystal flip-crystal field-effect transistors with a SiO2 gate dielectric. Trap densities of up to 2*10^12 cm^-2 were created in the experiments
We report the fabrication of back-gated field-effect transistors (FETs) using ultra-thin, mechanically exfoliated MoSe2 flakes. The MoSe2 FETs are n-type and possess a high gate modulation, with On/Off ratios larger than 106. The devices show asymmet