ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamic nuclear polarization of a single charge-tunable InAs/GaAs quantum dot

131   0   0.0 ( 0 )
 نشر من قبل Olivier Krebs
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Beno^it Eble




اسأل ChatGPT حول البحث

We report on the dynamic nuclear polarization of a single charge-tunable self-assembled InAs/GaAs quantum dot in a longitudinal magnetic field of $sim$0.2T. The hyperfine interaction between the optically oriented electron and nuclei spins leads to the polarization of the quantum dot nuclei measured by the Overhauser-shift of the singly-charged excitons ($X^{+}$ and $X^{-}$). When going from $X^{+}$ to $X^{-}$, we observe a reversal of this shift which reflects the average electron spin optically written down in the quantum dot either in the $X^{+}$ state or in the final state of $X^{-}$ recombination. We discuss a theoretical model which indicates an efficient depolarization mechanism for the nuclei limiting their polarization to ~10%.

قيم البحث

اقرأ أيضاً

112 - I. Favero 2004
We present the experimental evidence of giant optical anisotropy in single InAs quantum dots. Polarization-resolved photoluminescence spectroscopy reveals a linear polarization ratio with huge fluctuations, from one quantum dot to another, in sign an d in magnitude with absolute values up to 82%. Systematic measurements on hundreds of quantum dots coming from two different laboratories demonstrate that the giant optical anisotropy is an intrinsic feature of dilute quantum-dot arrays.
268 - M. Manca , G. Wang , T. Kuroda 2018
In III-V semiconductor nano-structures the electron and nuclear spin dynamics are strongly coupled. Both spin systems can be controlled optically. The nuclear spin dynamics is widely studied, but little is known about the initialization mechanisms. H ere we investigate optical pumping of carrier and nuclear spins in charge tunable GaAs dots grown on 111A substrates. We demonstrate dynamic nuclear polarization (DNP) at zero magnetic field in a single quantum dot for the positively charged exciton X$^+$ state transition. We tune the DNP in both amplitude and sign by variation of an applied bias voltage V$_g$. Variation of $Delta$V$_g$ of the order of 100 mV changes the Overhauser splitting (nuclear spin polarization) from -30 $mu$eV (-22 %) to +10 $mu$eV (+7 %), although the X$^+$ photoluminescence polarization does not change sign over this voltage range. This indicates that absorption in the structure and energy relaxation towards the X$^+$ ground state might provide favourable scenarios for efficient electron-nuclear spin flip-flops, generating DNP during the first tens of ps of the X$^+$ lifetime which is of the order of hundreds of ps. Voltage control of DNP is further confirmed in Hanle experiments.
We report on the direct measurement of the electron spin splitting and the accompanying nuclear Overhauser (OH) field, and thus the underlying nuclear spin polarization (NSP) and fluctuation bandwidth, in a single InAs quantum dot under resonant exci tation conditions with unprecedented spectral resolution. The electron spin splitting is measured directly via resonant spin-flip single photon Raman scattering detected by superconducting nanowires to generate excitation-emission energy maps. The observed two-dimensional maps reveal an OH field that has a non-linear dependence on excitation frequency. This study provides new insight into earlier reports of so-called avoidance and tracking, showing two distinct NSP responses directly by the addition of a emission energy axis. The data show that the polarization processes depend on which electron spin state is optically driven, with surprising differences in the polarization fluctuations for each case: in one case, a stabilized field characterized by a single-peaked distribution shifts monotonically with the laser excitation frequency resulting in a nearly constant optical interaction strength across a wide detuning range, while in the other case the previously reported avoidance behavior is actually the result of a nonlinear dependence on the laser excitation frequency near zero detuning leading to switching between two distinct mesoscopic nuclear spin states. The magnitude of the field, which is as large as 400 mT, is measured with sub-100 nuclear spin sensitivity. Stable/unstable points of the OH field distribution are observed, resulting from the non-linear feedback loop in the electron-trion-nuclear system. Nuclear spin polarization state switching occurs between fields differing by 160 mT at least as fast as 25 ms. Control experiments indicate that the strain-induced quadrupolar interaction may explain the measured OH fields.
We report a new transport feature in a GaAs lateral double quantum dot that emerges only for magnetic field sweeps and shows hysteresis due to dynamic nuclear spin polarization (DNP). This DNP signal appears in the Coulomb blockade regime by virtue o f the finite inter-dot tunnel coupling and originates from the crossing between ground levels of the spin triplet and singlet extensively used for nuclear spin manipulations in pulsed gate experiments. The unexpectedly large signal intensity is suggestive of unbalanced DNP between the two dots, which opens up the possibility of controlling electron and nuclear spin states via DC transport.
We report optically detected nuclear magnetic resonance (ODNMR) measurements on small ensembles of nuclear spins in single GaAs quantum dots. Using ODNMR we make direct measurements of the inhomogeneous Knight field from a photo-excited electron whic h acts on the nuclei in the dot. The resulting shifts of the NMR peak can be optically controlled by varying the electron occupancy and its spin orientation, and lead to strongly asymmetric lineshapes at high optical excitation. The all-optical control of the NMR lineshape will enable position-selective control of small groups of nuclear spins in a dot. Our calculations also show that the asymmetric NMR peak lineshapes can provide information on the volume of the electron wave-function, and may be used for measurements of non-uniform distributions of atoms in nano-structures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا