ﻻ يوجد ملخص باللغة العربية
The elementary excitations of fractional quantum Hall (FQH) fluids are vortices with fractional statistics. Yet, this fundamental prediction has remained an open experimental challenge. Here we show that the cross current noise in a three-terminal tunneling experiment of a two dimensional electron gas in the FQH regime can be used to detect directly the statistical angle of the excitations of these topological quantum fluids. We show that the noise also reveals signatures of exclusion statistics and of fractional charge. The vortices of Laughlin states should exhibit a ``bunching effect, while for higher states in the Jain sequences they should exhibit an ``anti-bunching effect.
Quasiparticles with fractional charge and fractional statistics are key features of the fractional quantum Hall effect. We discuss in detail the definitions of fractional charge and statistics and the ways in which these properties may be observed. I
We study the current correlations of fractional quantum Hall edges at the output of a quantum point contact (QPC) subjected to a temperature gradient. This out-of-equilibrium situation gives rise to a form of temperature-activated shot noise, dubbed
We have experimentally identified fractional quasiparticle creation in a tunneling process through a local fractional quantum Hall (FQH) state. The local FQH state is prepared in a low-density region near a quantum point contact (QPC) in an integer q
We study theoretically resonant tunneling of composite fermions through their quasi-bound states around a fractional quantum Hall island, and find a rich set of possible transitions of the island state as a function of the magnetic field or the backg
The effect of an AC perturbation on the shot noise of a fractional quantum Hall fluid is studied both in the weak and the strong backscattering regimes. It is known that the zero-frequency current is linear in the bias voltage, while the noise deriva