ترغب بنشر مسار تعليمي؟ اضغط هنا

Shot-noise evidence of fractional quasiparticle creation in a local fractional quantum Hall state

201   0   0.0 ( 0 )
 نشر من قبل Masayuki Hashisaka
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have experimentally identified fractional quasiparticle creation in a tunneling process through a local fractional quantum Hall (FQH) state. The local FQH state is prepared in a low-density region near a quantum point contact (QPC) in an integer quantum Hall (IQH) system. Shot-noise measurements reveal a clear transition from elementary-charge tunneling at low bias to fractional-charge tunneling at high bias. The fractional shot noise is proportional to T1(1 ? T1) over a wide range of T1, where T1 is the transmission probability of the IQH edge channel. This binomial distribution indicates that fractional quasiparticles emerge from the IQH state to be transmitted through the local FQH state. The study of this tunneling process will enable us to elucidate the dynamics of Laughlin quasiparticles in FQH systems.



قيم البحث

اقرأ أيضاً

59 - A. Crepieux , P. Devillard , 2003
The effect of an AC perturbation on the shot noise of a fractional quantum Hall fluid is studied both in the weak and the strong backscattering regimes. It is known that the zero-frequency current is linear in the bias voltage, while the noise deriva tive exhibits steps as a function of bias. In contrast, at Laughlin fractions, the backscattering current and the backscattering noise both exhibit evenly spaced singularities, which are reminiscent of the tunneling density of states singularities for quasiparticles. The spacing is determined by the quasiparticle charge $ u e$ and the ratio of the DC bias with respect to the drive frequency. Photo--assisted transport can thus be considered as a probe for effective charges at such filling factors, and could be used in the study of more complicated fractions of the Hall effect. A non-perturbative method for studying photo--assisted transport at $ u=1/2$ is developed, using a refermionization procedure.
We investigate the 1/3 fractional quantum Hall state with one and two quasiparticle excitations. It is shown that the quasiparticle excitations are best described as excited composite fermions occupying higher composite-fermion quasi-Landau levels. I n particular, the composite-fermion wave function for a single quasiparticle has 15% lower energy than the trial wave function suggested by Laughlin, and for two quasiparticles, the composite fermion theory also gives new qualitative structures.
The elementary excitations of fractional quantum Hall (FQH) fluids are vortices with fractional statistics. Yet, this fundamental prediction has remained an open experimental challenge. Here we show that the cross current noise in a three-terminal tu nneling experiment of a two dimensional electron gas in the FQH regime can be used to detect directly the statistical angle of the excitations of these topological quantum fluids. We show that the noise also reveals signatures of exclusion statistics and of fractional charge. The vortices of Laughlin states should exhibit a ``bunching effect, while for higher states in the Jain sequences they should exhibit an ``anti-bunching effect.
We study the current correlations of fractional quantum Hall edges at the output of a quantum point contact (QPC) subjected to a temperature gradient. This out-of-equilibrium situation gives rise to a form of temperature-activated shot noise, dubbed delta-$T$ noise. We show that the tunneling of Laughlin quasiparticles leads to a negative delta-$T$ noise, in stark contrast with electron tunneling. Moreover, varying the transmission of the QPC or applying a voltage bias across the Hall bar may flip the sign of this noise contribution, yielding signatures which can be accessed experimentally.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا