ﻻ يوجد ملخص باللغة العربية
We study the current correlations of fractional quantum Hall edges at the output of a quantum point contact (QPC) subjected to a temperature gradient. This out-of-equilibrium situation gives rise to a form of temperature-activated shot noise, dubbed delta-$T$ noise. We show that the tunneling of Laughlin quasiparticles leads to a negative delta-$T$ noise, in stark contrast with electron tunneling. Moreover, varying the transmission of the QPC or applying a voltage bias across the Hall bar may flip the sign of this noise contribution, yielding signatures which can be accessed experimentally.
The interplay between interaction and disorder-induced localization is of fundamental interest. This article addresses localization physics in the fractional quantum Hall state, where both interaction and disorder have nonperturbative consequences. W
We demonstrate the emergence of the quantum Hall (QH) hierarchy in a 2D model of coupled quantum wires in a perpendicular magnetic field. At commensurate values of the magnetic field, the system can develop instabilities to appropriate inter-wire ele
The lowest-Landau-level anyon model becomes nonperiodic in the statistics parameter when the finite size of the attached flux tubes is taken into account. The finite-size effects cause the inverse proportional relation between the critical filling fa
We review the construction of a low-energy effective field theory and its state space for abelian quantum Hall fluids. The scaling limit of the incompressible fluid is described by a Chern-Simons theory in 2+1 dimensions on a manifold with boundary.
We discuss anomalous fractional quantum Hall effect that exists without external magnetic field. We propose that excitations in such systems may be described effectively by non-interacting particles with the Hamiltonians defined on the Brillouin zone