ترغب بنشر مسار تعليمي؟ اضغط هنا

Novel order parameter to describe the critical behavior of Ising spin glass models

196   0   0.0 ( 0 )
 نشر من قبل Federico Rom\\'a
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A novel order parameter $Phi$ for spin glasses is defined based on topological criteria and with a clear physical interpretation. $Phi$ is first investigated for well known magnetic systems and then applied to the Edwards-Anderson $pm J$ model on a square lattice, comparing its properties with the usual $q$ order parameter. Finite size scaling procedures are performed. Results and analyses based on $Phi$ confirm a zero temperature phase transition and allow to identify the low temperature phase. The advantages of $Phi$ are brought out and its physical meaning is established.

قيم البحث

اقرأ أيضاً

We use finite size scaling to study Ising spin glasses in two spatial dimensions. The issue of universality is addressed by comparing discrete and continuous probability distributions for the quenched random couplings. The sophisticated temperature d ependency of the scaling fields is identified as the major obstacle that has impeded a complete analysis. Once temperature is relinquished in favor of the correlation length as the basic variable, we obtain a reliable estimation of the anomalous dimension and of the thermal critical exponent. Universality among binary and Gaussian couplings is confirmed to a high numerical accuracy.
The interplay of correlated spatial modulation and symmetry breaking leads to quantum critical phenomena intermediate between those of the clean and randomly disordered cases. By performing a detailed analytic and numerical case study of the quasi-pe riodically (QP) modulated transverse field Ising chain, we provide evidence for the conjectures of Ref.~cite{crowley2018quasi} regarding the QP-Ising universality class. In the generic case, we confirm that the logarithmic wandering coefficient $w$ governs both the macroscopic critical exponents and the energy-dependent localisation length of the critical excitations. However, for special values of the phase difference $Delta$ between the exchange and transverse field couplings, the QP-Ising transition has different properties. For $Delta=0$, a generalised Aubry-Andre duality prevents the finite energy excitations from localising despite the presence of logarithmic wandering. For $Delta$ such that the fields and couplings are related by a lattice shift, the wandering coefficient $w$ vanishes. Nonetheless, the presence of small couplings leads to non-trivial exponents and localised excitations. Our results add to the rich menagerie of quantum Ising transitions in the presence of spatial modulation.
214 - Mehmet Demirtas , Asli Tuncer , 2015
The lower-critical dimension for the existence of the Ising spin-glass phase is calculated, numerically exactly, as $d_L = 2.520$ for a family of hierarchical lattices, from an essentially exact (correlation coefficent $R^2 = 0.999999$) near-linear f it to 23 different diminishing fractional dimensions. To obtain this result, the phase transition temperature between the disordered and spin-glass phases, the corresponding critical exponent $y_T$, and the runaway exponent $y_R$ of the spin-glass phase are calculated for consecutive hierarchical lattices as dimension is lowered.
All higher-spin s >= 1/2 Ising spin glasses are studied by renormalization-group theory in spatial dimension d=3. The s-sequence of global phase diagrams, the chaos Lyapunov exponent, and the spin-glass runaway exponent are calculated. It is found th at, in d=3, a finite-temperature spin-glass phase occurs for all spin values, including the continuum limit of s rightarrow infty. The phase diagrams, with increasing spin s, saturate to a limit value. The spin-glass phase, for all s, exhibits chaotic behavior under rescalings, with the calculated Lyapunov exponent of lambda = 1.93 and runaway exponent of y_R=0.24, showing simultaneous strong-chaos and strong-coupling behaviors. The ferromagnetic-spinglass-antiferromagnetic phase transitions occurring around p_t = 0.37 and 0.63 are unaffected by s, confirming the percolative nature of this phase transition.
We study critical behavior of the diluted 2D Ising model in the presence of disorder correlations which decay algebraically with distance as $sim r^{-a}$. Mapping the problem onto 2D Dirac fermions with correlated disorder we calculate the critical p roperties using renormalization group up to two-loop order. We show that beside the Gaussian fixed point the flow equations have a non trivial fixed point which is stable for $0.995<a<2$ and is characterized by the correlation length exponent $ u= 2/a + O((2-a)^3)$. Using bosonization, we also calculate the averaged square of the spin-spin correlation function and find the corresponding critical exponent $eta_2=1/2-(2-a)/4+O((2-a)^2)$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا