ترغب بنشر مسار تعليمي؟ اضغط هنا

Universal critical behavior of the 2d Ising spin glass

82   0   0.0 ( 0 )
 نشر من قبل Victor Martin-Mayor
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use finite size scaling to study Ising spin glasses in two spatial dimensions. The issue of universality is addressed by comparing discrete and continuous probability distributions for the quenched random couplings. The sophisticated temperature dependency of the scaling fields is identified as the major obstacle that has impeded a complete analysis. Once temperature is relinquished in favor of the correlation length as the basic variable, we obtain a reliable estimation of the anomalous dimension and of the thermal critical exponent. Universality among binary and Gaussian couplings is confirmed to a high numerical accuracy.



قيم البحث

اقرأ أيضاً

A novel order parameter $Phi$ for spin glasses is defined based on topological criteria and with a clear physical interpretation. $Phi$ is first investigated for well known magnetic systems and then applied to the Edwards-Anderson $pm J$ model on a s quare lattice, comparing its properties with the usual $q$ order parameter. Finite size scaling procedures are performed. Results and analyses based on $Phi$ confirm a zero temperature phase transition and allow to identify the low temperature phase. The advantages of $Phi$ are brought out and its physical meaning is established.
We report a high-precision finite-size scaling study of the critical behavior of the three-dimensional Ising Edwards-Anderson model (the Ising spin glass). We have thermalized lattices up to L=40 using the Janus dedicated computer. Our analysis takes into account leading-order corrections to scaling. We obtain Tc = 1.1019(29) for the critical temperature, u = 2.562(42) for the thermal exponent, eta = -0.3900(36) for the anomalous dimension and omega = 1.12(10) for the exponent of the leading corrections to scaling. Standard (hyper)scaling relations yield alpha = -5.69(13), beta = 0.782(10) and gamma = 6.13(11). We also compute several universal quantities at Tc.
We study critical behavior of the diluted 2D Ising model in the presence of disorder correlations which decay algebraically with distance as $sim r^{-a}$. Mapping the problem onto 2D Dirac fermions with correlated disorder we calculate the critical p roperties using renormalization group up to two-loop order. We show that beside the Gaussian fixed point the flow equations have a non trivial fixed point which is stable for $0.995<a<2$ and is characterized by the correlation length exponent $ u= 2/a + O((2-a)^3)$. Using bosonization, we also calculate the averaged square of the spin-spin correlation function and find the corresponding critical exponent $eta_2=1/2-(2-a)/4+O((2-a)^2)$.
Using Monte Carlo simulations, we study in detail the overlap distribution for individual samples for several spin-glass models including the infinite-range Sherrington-Kirkpatrick model, short-range Edwards-Anderson models in three and four space di mensions, and one-dimensional long-range models with diluted power-law interactions. We study three long-range models with different powers as follows: the first is approximately equivalent to a short-range model in three dimensions, the second to a short-range model in four dimensions, and the third to a short-range model in the mean-field regime. We study an observable proposed earlier by some of us which aims to distinguish the replica symmetry breaking picture of the spin-glass phase from the droplet picture, finding that larger system sizes would be needed to unambiguously determine which of these pictures describes the low-temperature state of spin glasses best, except for the Sherrington-Kirkpatrick model which is unambiguously described by replica symmetry breaking. Finally, we also study the median integrated overlap probability distribution and a typical overlap distribution, finding that these observables are not particularly helpful in distinguishing the replica symmetry breaking and the droplet pictures.
The standard two-dimensional Ising spin glass does not exhibit an ordered phase at finite temperature. Here, we investigate whether long-range correlated bonds change this behavior. The bonds are drawn from a Gaussian distribution with a two-point co rrelation for bonds at distance r that decays as $(1+r^2)^{-a/2}$, $a>0$. We study numerically with exact algorithms the ground state and domain wall excitations. Our results indicate that the inclusion of bond correlations does not lead to a spin-glass order at any finite temperature. A further analysis reveals that bond correlations have a strong effect at local length scales, inducing ferro/antiferromagnetic domains into the system. The length scale of ferro/antiferromagnetic order diverges exponentially as the correlation exponent approaches a critical value, $a to a_c = 0$. Thus, our results suggest that the system becomes a ferro/antiferromagnet only in the limit $a to 0$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا