ﻻ يوجد ملخص باللغة العربية
The thermodynamic and retrieval properties of the Blume-Emery-Griffiths neural network with synchronous updating and variable dilution are studied using replica mean-field theory. Several forms of dilution are allowed by pruning the different types of couplings present in the Hamiltonian. The appearance and properties of two-cycles are discussed. Capacity-temperature phase diagrams are derived for several values of the pattern activity. The results are compared with those for sequential updating. The effect of self-coupling is studied. Furthermore, the optimal combination of dilution parameters giving the largest critical capacity is obtained.
The three-state Ising neural network with synchronous updating and variable dilution is discussed starting from the appropriate Hamiltonians. The thermodynamic and retrieval properties are examined using replica mean-field theory. Capacity-temperatur
The dynamics and the stationary states of an exactly solvable three-state layered feed-forward neural network model with asymmetric synaptic connections, finite dilution and low pattern activity are studied in extension of a recent work on a recurren
We study with numerical simulation the possible limit behaviors of synchronous discrete-time deterministic recurrent neural networks composed of N binary neurons as a function of a networks level of dilution and asymmetry. The network dilution measur
Recently it was shown (I.A.Gruzberg, A. Klumper, W. Nuding and A. Sedrakyan, Phys.Rev.B 95, 125414 (2017)) that taking into account random positions of scattering nodes in the network model with $U(1)$ phase disorder yields a localization length expo
We analyse the possible dynamical states emerging for two symmetrically pulse coupled populations of leaky integrate-and-fire neurons. In particular, we observe broken symmetry states in this set-up: namely, breathing chimeras, where one population i