ﻻ يوجد ملخص باللغة العربية
Recently it was shown (I.A.Gruzberg, A. Klumper, W. Nuding and A. Sedrakyan, Phys.Rev.B 95, 125414 (2017)) that taking into account random positions of scattering nodes in the network model with $U(1)$ phase disorder yields a localization length exponent $2.37 pm 0.011$ for plateau transitions in the integer quantum Hall effect. This is in striking agreement with the experimental value of $2.38 pm 0.06$. Randomness of the network was modeled by replacing standard scattering nodes of a regular network by pure tunneling resp.reflection with probability $p$ where the particular value $p=1/3$ was chosen. Here we investigate the role played by the strength of the geometric disorder, i.e. the value of $p$. We consider random networks with arbitrary probability $0 <p<1/2$ for extreme cases and show the presence of a line of critical points with varying localization length indices having a minimum located at $p=1/3$.
We consider the one-dimensional partially asymmetric exclusion process with random hopping rates, in which a fraction of particles (or sites) have a preferential jumping direction against the global drift. In this case the accumulated distance travel
We consider the two-dimensional randomly site diluted Ising model and the random-bond +-J Ising model (also called Edwards-Anderson model), and study their critical behavior at the paramagnetic-ferromagnetic transition. The critical behavior of therm
We analyze the ground state localization properties of an array of identical interacting spinless fermionic chains with quasi-random disorder, using non-perturbative Renormalization Group methods. In the single or two chains case localization persist
The thermodynamic and retrieval properties of the Blume-Emery-Griffiths neural network with synchronous updating and variable dilution are studied using replica mean-field theory. Several forms of dilution are allowed by pruning the different types o
The geometry of multi-parameter families of quantum states is important in numerous contexts, including adiabatic or nonadiabatic quantum dynamics, quantum quenches, and the characterization of quantum critical points. Here, we discuss the Hilbert-sp