ترغب بنشر مسار تعليمي؟ اضغط هنا

Matrix product states represent ground states faithfully

172   0   0.0 ( 0 )
 نشر من قبل Verstraete Frank
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We quantify how well matrix product states approximate exact ground states of 1-D quantum spin systems as a function of the number of spins and the entropy of blocks of spins. We also investigate the convex set of local reduced density operators of translational invariant systems. The results give a theoretical justification for the high accuracy of renormalization group algorithms, and justifies their use even in the case of critical systems.



قيم البحث

اقرأ أيضاً

We characterize the conditions under which a translationally invariant matrix product state (MPS) is invariant under local transformations. This allows us to relate the symmetry group of a given state to the symmetry group of a simple tensor. We expl oit this result in order to prove and extend a version of the Lieb-Schultz-Mattis theorem, one of the basic results in many-body physics, in the context of MPS. We illustrate the results with an exhaustive search of SU(2)--invariant two-body Hamiltonians which have such MPS as exact ground states or excitations.
While general quantum many-body systems require exponential resources to be simulated on a classical computer, systems of non-interacting fermions can be simulated exactly using polynomially scaling resources. Such systems may be of interest in their own right, but also occur as effective models in numerical methods for interacting systems, such as Hartree-Fock, density functional theory, and many others. Often it is desirable to solve systems of many thousand constituent particles, rendering these simulations computationally costly despite their polynomial scaling. We demonstrate how this scaling can be improved by adapting methods based on matrix product states, which have been enormously successful for low-dimensional interacting quantum systems, to the case of free fermions. Compared to the case of interacting systems, our methods achieve an exponential speedup in the entanglement entropy of the state. We demonstrate their use to solve systems of up to one million sites with an effective MPS bond dimension of 10^15.
160 - F. Verstraete , J.I. Cirac 2010
We define matrix product states in the continuum limit, without any reference to an underlying lattice parameter. This allows to extend the density matrix renormalization group and variational matrix product state formalism to quantum field theories and continuum models in 1 spatial dimension. We illustrate our procedure with the Lieb-Liniger model.
A generic method to investigate many-body continuous-variable systems is pedagogically presented. It is based on the notion of matrix product states (so-called MPS) and the algorithms thereof. The method is quite versatile and can be applied to a wid e variety of situations. As a first test, we show how it provides reliable results in the computation of fundamental properties of a chain of quantum harmonic oscillators achieving off-critical and critical relative errors of the order of 10^(-8) and 10^(-4) respectively. Next, we use it to study the ground state properties of the quantum rotor model in one spatial dimension, a model that can be mapped to the Mott insulator limit of the 1-dimensional Bose-Hubbard model. At the quantum critical point, the central charge associated to the underlying conformal field theory can be computed with good accuracy by measuring the finite-size corrections of the ground state energy. Examples of MPS-computations both in the finite-size regime and in the thermodynamic limit are given. The precision of our results are found to be comparable to those previously encountered in the MPS studies of, for instance, quantum spin chains. Finally, we present a spin-off application: an iterative technique to efficiently get numerical solutions of partial differential equations of many variables. We illustrate this technique by solving Poisson-like equations with precisions of the order of 10^(-7).
We develop variational matrix product state (MPS) methods with symmetries to determine dispersion relations of one dimensional quantum lattices as a function of momentum and preset quantum number. We test our methods on the XXZ spin chain, the Hubbar d model and a non-integrable extended Hubbard model, and determine the excitation spectra with a precision similar to the one of the ground state. The formulation in terms of quantum numbers makes the topological nature of spinons and holons very explicit. In addition, the method also enables an easy and efficient direct calculation of the necessary magnetic field or chemical potential required for a certain ground state magnetization or particle density.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا