ﻻ يوجد ملخص باللغة العربية
We characterize the conditions under which a translationally invariant matrix product state (MPS) is invariant under local transformations. This allows us to relate the symmetry group of a given state to the symmetry group of a simple tensor. We exploit this result in order to prove and extend a version of the Lieb-Schultz-Mattis theorem, one of the basic results in many-body physics, in the context of MPS. We illustrate the results with an exhaustive search of SU(2)--invariant two-body Hamiltonians which have such MPS as exact ground states or excitations.
We develop variational matrix product state (MPS) methods with symmetries to determine dispersion relations of one dimensional quantum lattices as a function of momentum and preset quantum number. We test our methods on the XXZ spin chain, the Hubbar
We quantify how well matrix product states approximate exact ground states of 1-D quantum spin systems as a function of the number of spins and the entropy of blocks of spins. We also investigate the convex set of local reduced density operators of t
Motivated by the existence of exact many-body quantum scars in the AKLT chain, we explore the connection between Matrix Product State (MPS) wavefunctions and many-body quantum scarred Hamiltonians. We provide a method to systematically search for and
While general quantum many-body systems require exponential resources to be simulated on a classical computer, systems of non-interacting fermions can be simulated exactly using polynomially scaling resources. Such systems may be of interest in their
We focus on symmetries related to matrices and vectors appearing in the simulation of quantum many-body systems. Spin Hamiltonians have special matrix-symmetry properties such as persymmetry. Furthermore, the systems may exhibit physical symmetries t