ﻻ يوجد ملخص باللغة العربية
We study the finite-size behavior of the low-lying excitations of spin-1/2 Heisenberg chains with dimerization and next-to-nearest neighbors interaction, J_2. The numerical analysis, performed using density-matrix renormalization group, confirms previous exact diagonalization results, and shows that, for different values of the dimerization parameter delta, the elementary triplet and singlet excitations present a clear scaling behavior in a wide range of ell=L/xi (where L is the length of the chain and xi is the correlation length). At J_2=J_2c, where no logarithmic corrections are present, we compare the numerical results with finite-size predictions for the sine-Gordon model obtained using Luschers theory. For small delta we find a very good agreement for ell > 4 or 7 depending on the excitation considered.
We study the magnetic excitations on top of the plateaux states recently discovered in spin-Peierls systems in a magnetic field. We show by means of extensive density matrix renormalization group (DMRG) computations and an analytic approach that one
In this letter we continue the investigation of finite XXZ spin chains with periodic boundary conditions and odd number of sites, initiated in paper cite{S}. As it turned out, for a special value of the asymmetry parameter $Delta=-1/2$ the Hamiltonia
We report muon spin relaxation (muSR) and magnetic susceptibility investigations of two Ti3+ chain compounds which each exhibit a spin gap at low temperature, NaTiSi2O6 and TiOCl. From these we conclude that the spin gap in NaTiSi2O6 is temperature i
The static structure factor S(q) of frustrated spin-1/2 chains with isotropic exchange and a singlet ground state (GS) diverges at wave vector q_m when the GS has quasi-long-range order (QLRO) with periodicity 2pi/q_m but S(q_m) is finite in bond-ord
We show that a wide class of spin chains with topological frustration cannot develop any local order. In particular, we consider translational-invariant one-dimensional chains with frustrated boundary conditions, i.e. periodic boundary conditions and