ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin chains and combinatorics

80   0   0.0 ( 0 )
 نشر من قبل Yuri Stroganov
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this letter we continue the investigation of finite XXZ spin chains with periodic boundary conditions and odd number of sites, initiated in paper cite{S}. As it turned out, for a special value of the asymmetry parameter $Delta=-1/2$ the Hamiltonian of the system has an eigenvalue, which is exactly proportional to the number of sites $E=-3N/2$. Using {sc Mathematica} we have found explicitly the corresponding eigenvectors for $N le 17$. The obtained results support the conjecture of paper cite{S} that this special eigenvalue corresponds to the ground state vector. We make a lot of conjectures concerning the correlations of the model. Many remarkable relations between the wave function components are noticed. It is turned out, for example, that the ratio of the largest component to the least one is equal to the number of the alternating sing matrices.



قيم البحث

اقرأ أيضاً

This work considers entropy generation and relaxation in quantum quenches in the Ising and $3$-state Potts spin chains. In the absence of explicit symmetry breaking we find universal ratios involving Renyi entropy growth rates and magnetisation relax ation for small quenches. We also demonstrate that the magnetisation relaxation rate provides an observable signature for the dynamical Gibbs effect which is a recently discovered characteristic non-monotonous behaviour of entropy growth linked to changes in the quasi-particle spectrum.
We study the finite-size behavior of the low-lying excitations of spin-1/2 Heisenberg chains with dimerization and next-to-nearest neighbors interaction, J_2. The numerical analysis, performed using density-matrix renormalization group, confirms prev ious exact diagonalization results, and shows that, for different values of the dimerization parameter delta, the elementary triplet and singlet excitations present a clear scaling behavior in a wide range of ell=L/xi (where L is the length of the chain and xi is the correlation length). At J_2=J_2c, where no logarithmic corrections are present, we compare the numerical results with finite-size predictions for the sine-Gordon model obtained using Luschers theory. For small delta we find a very good agreement for ell > 4 or 7 depending on the excitation considered.
We consider the partial transpose of the spin reduced density matrix of two disjoint blocks in spin chains admitting a representation in terms of free fermions, such as XY chains. We exploit the solution of the model in terms of Majorana fermions and show that such partial transpose in the spin variables is a linear combination of four Gaussian fermionic operators. This representation allows to explicitly construct and evaluate the integer moments of the partial transpose. We numerically study critical XX and Ising chains and we show that the asymptotic results for large blocks agree with conformal field theory predictions if corrections to the scaling are properly taken into account.
We determine the spectra of a class of quantum spin chains of Temperley-Lieb type by utilizing the concept of Temperley-Lieb equivalence with the S=1/2 XXZ chain as a reference system. We consider open boundary conditions and in particular periodic b oundary conditions. For both types of boundaries the identification with XXZ spectra is performed within isomorphic representations of the underlying Temperley-Lieb algebra. For open boundaries the spectra of these models differ from the spectrum of the associated XXZ chain only in the multiplicities of the eigenvalues. The periodic case is rather different. Here we show how the spectrum is obtained sector-wise from the spectra of globally twisted XXZ chains. As a spin-off, we obtain a compact formula for the degeneracy of the momentum operator eigenvalues. Our representation theoretical results allow for the study of the thermodynamics by establishing a TL-equivalence at finite temperature and finite field.
We introduce a new class of open, translationally invariant spin chains with long-range interactions depending on both spin permutation and (polarized) spin reversal operators, which includes the Haldane-Shastry chain as a particular degenerate case. The new class is characterized by the fact that the Hamiltonian is invariant under twisted translations, combining an ordinary translation with a spin flip at one end of the chain. It includes a remarkable model with elliptic spin-spin interactions, smoothly interpolating between the XXX Heisenberg model with anti-periodic boundary conditions and a new open chain with sites uniformly spaced on a half-circle and interactions inversely proportional to the square of the distance between the spins. We are able to compute in closed form the partition function of the latter chain, thereby obtaining a complete description of its spectrum in terms of a pair of independent su(1|1) and ${rm su}(m/2)$ motifs when the number $m$ of internal degrees of freedom is even. This implies that the even $m$ model is invariant under the direct sum of the Yangians $Y$(gl(1|1)) and $Y$(gl$(0|m/2)$). We also analyze several statistical properties of the new chains spectrum. In particular, we show that it is highly degenerate, which strongly suggests the existence of an underlying (twisted) Yangian symmetry also for odd $m$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا