ترغب بنشر مسار تعليمي؟ اضغط هنا

Absence of local order in topologically frustrated spin chains

118   0   0.0 ( 0 )
 نشر من قبل Fabio Franchini
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that a wide class of spin chains with topological frustration cannot develop any local order. In particular, we consider translational-invariant one-dimensional chains with frustrated boundary conditions, i.e. periodic boundary conditions and an odd number of sites, which possess a global SU(2) symmetry. This condition implies, even at a finite sizes, an exact degeneracy of the ground state and is quite general in absence of external fields. We directly evaluate the expectation value of operators with support over a finite range of lattice sites and show that, except for some precise conditions, they all decay algebraically, or faster, with the chain length and vanish in the thermodynamic limit. The exceptions that admit a finite order are cases with a higher ground state degeneracy in which the translational symmetry is broken by the ground state choice.



قيم البحث

اقرأ أيضاً

The false vacuum decay has been a central theme in physics for half a century with applications to cosmology and to the theory of fundamental interactions. This fascinating phenomenon is even more intriguing when combined with the confinement of elem entary particles. Due to the astronomical time scales involved, the research has so far focused on theoretical aspects of this decay. The purpose of this Letter is to show that the false vacuum decay is accessible to current optical experiments as quantum analog simulators of spin chains with confinement of the elementary excitations, which mimic the high energy phenomenology but in one spatial dimension. We study the non-equilibrium dynamics of the false vacuum in a quantum Ising chain and in an XXZ ladder. The false vacuum is the metastable state that arises in the ferromagnetic phase of the model when the symmetry is explicitly broken by a longitudinal field. This state decays through the formation of bubbles of true vacuum. Using iTEBD simulations, we are able to study the real-time evolution in the thermodynamic limit and measure the decay rate of local observables. We find that the numerical results agree with the theoretical prediction that the decay rate is exponentially small in the inverse of the longitudinal field.
We study the time evolution of bi- and tripartite operator mutual information of the time-evolution operator and Paulis spin operators in the one-dimensional Ising model with magnetic field and the disordered Heisenberg model. In the Ising model, the early-time evolution qualitatively follows an effective light cone picture, and the late-time value is well described by Pages value for a random pure state. In the Heisenberg model with strong disorder, we find many-body localization prevents the information from propagating and being delocalized. We also find an effective Ising Hamiltonian describes the time evolution of bi- and tripartite operator mutual information for the Heisenberg model in the large disorder regime.
A central tenant in the classification of phases is that boundary conditions cannot affect the bulk properties of a system. In this work, we show striking, yet puzzling, evidence of a clear violation of this assumption. We use the prototypical exampl e of an XYZ chain with no external field in a ring geometry with an odd number of sites and both ferromagnetic and antiferromagnetic interactions. In such a setting, even at finite sizes, we are able to calculate directly the spontaneous magnetizations that are traditionally used as order parameters to characterize the systems phases. When ferromagnetic interactions dominate, we recover magnetizations that in the thermodynamic limit lose any knowledge about the boundary conditions and are in complete agreement with standard expectations. On the contrary, when the system is governed by antiferromagnetic interactions, the magnetizations decay algebraically to zero with the system size and are not staggered, despite the AFM coupling. We term this behavior {it ferromagnetic mesoscopic magnetization}. Hence, in the antiferromagnetic regime, our results show an unexpected dependence of a local, one--spin expectation values on the boundary conditions, which is in contrast with predictions from the general theory.
By means of a numerical analysis using a non-Abelian symmetry realization of the density matrix renormalization group, we study the behavior of vector chirality correlations in isotropic frustrated chains of spin S=1 and S=1/2, subject to a strong ex ternal magnetic field. It is shown that the field induces a phase with spontaneously broken chiral symmetry, in line with earlier theoretical predictions. We present results on the field dependence of the order parameter and the critical exponents.
We derive the dominant contribution to the large-distance decay of correlation functions for a spin chain model that exhibits both Haldane and Neel phases in its ground state phase diagram. The analytic results are obtained by means of an approximate mapping between a spin-1 anisotropic Hamiltonian onto a fermionic model of noninteracting Bogolioubov quasiparticles related in turn to the XY spin-1/2 chain in a transverse field. This approach allows us to express the spin-1 string operators in terms of fermionic operators so that the dominant contribution to the string correlators at large distances can be computed using the technique of Toeplitz determinants. As expected, we find long-range string order both in the longitudinal and in the transverse channel in the Haldane phase, while in the Neel phase only the longitudinal order survives. In this way, the long-range string order can be explicitly related to the components of the magnetization of the XY model. Moreover, apart from the critical line, where the decay is algebraic, we find that in the gapped phases the decay is governed by an exponential tail multiplied by algebraic factors. As regards the usual two points correlation functions, we show that the longitudinal one behaves in a dual fashion with respect to the transverse string correlator, namely both the asymptotic values and the decay laws exchange when the transition line is crossed. For the transverse spin-spin correlator, we find a finite characteristic length which is an unexpected feature at the critical point. We also comment briefly the entanglement features of the original system versus those of the effective model. The goodness of the approximation and the analytical predictions are checked versus density-matrix renormalization group calculations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا